Skip to main content

Lightwave Propagation in the Air

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence
  • 17 Accesses

Abstract

Atmospheric turbulence that affects propagating light waves is described. A model of the atmosphere that distorts the wavefront of light waves is outlined, and the energy cascade theory of turbulence and the structure function of wind velocity are presented along with definitions of the outer scale and the inner scale. Structure functions are introduced to treat random quantities, where the relationship between the structure function of refractive index and the structure function of temperature is denoted. The Kolmogorov spatial power spectral density of refractive index fluctuations is expressed with the structure parameter of the refractive index. Representative models of the refractive index structure parameters as a function of altitude are shown with examples of calculations. Assuming that the atmosphere is a plane perpendicular to the direction of light wave propagation, the coherence length of the atmosphere, or Fried’s parameter, is derived from the wave structure function. The isoplanatic angle is presented as an indicator to show that two wavefronts with different propagation angles can be considered approximately equivalent, and the Greenwood frequencies at which two wavefronts measured can be considered approximately equivalent are introduced. For the phenomena observed in light waves propagating in atmospheric turbulence, theoretical expressions of intensity fluctuation, focal point variation, and movement of the irradiated area of the transmitted light waves are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.C. Owens, Optical refractive index of air: dependence on pressure, temperature and composition. Appl. Opt. 6(1), 51–59 (1967)

    Article  ADS  Google Scholar 

  2. S.F. Clifford, The classical theory of wave propagation in a turbulent medium, in Laser Beam Propagation in the Atmosphere, ed. by J.W. Strohbehn, (Springer, New York, 1978). Chap. 2

    Google Scholar 

  3. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, 2nd edn. (SPIE Press, Washington, 2005). Chap. 3

    Book  Google Scholar 

  4. O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84–99 (1883)

    Article  Google Scholar 

  5. L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, UK, 1922). Chap. 4

    Google Scholar 

  6. L.F. Richardson, Some measurements of atmospheric turbulence. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 221, 1–28 (1921)

    ADS  Google Scholar 

  7. J. Vernin, F. Roddier, Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere. J. Opt. Soc. Am. 63(3), 270–273 (1973)

    Article  ADS  Google Scholar 

  8. C.E. Coulman, J. Vernin, Y. Coqueugniot, J.L. Caccia, Outer scale of turbulence appropriate to modelling refractive-index structure profiles. Appl. Opt. 27(1), 155–160 (1988)

    Article  ADS  Google Scholar 

  9. A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941). Reprinted in Proceedings of the Royal Society of London A 434, 15–17, 1991

    ADS  MathSciNet  Google Scholar 

  10. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 9–13 (1941). Reprinted in Proceedings of the Royal Society of London A 434, 9–13, 1991

    MathSciNet  Google Scholar 

  11. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, in Turbulence, Classic Papers on Statistical Theory, ed. by S.K. Friedlander, L. Topper, (Interscience Publishers, New York, 1961), pp. 151–155

    Google Scholar 

  12. R.H. Tyson, Principles of Adaptive Optics, 4th edn. (CRC Press, New York, 2016). Chap. 2

    Google Scholar 

  13. V. I. Tatarski, The Effect of the Turbulent Atmosphere on Wave Propagation (U.S. Dept. of Commerce, National Technical Information Service, Springfield, 1971). Chap. 1. Translated by Israel Program for Scientific Translations; originally published in 1967

    Google Scholar 

  14. S. Corrsin, On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469–473 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  15. J.W. Strohbehn, Line-of-sight wave propagation through the turbulent atmosphere. Proc. IEEE, 1301–1318 (1968)

    Google Scholar 

  16. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, 2nd edn. (SPIE Press, Washington, 2005). Chap. 12

    Book  Google Scholar 

  17. M.G. Miller, P.L. Zieske, Turbulence Environmental Characterization, Rome Air Development Center, RADC-TR-79-131, ADA072379 (1979)

    Google Scholar 

  18. D.H. Tofsted, S.G. O’Brien, G.T. Vaucher, An Atmospheric Turbulence Profile Model for Use in Army Wargaming Applications I, Army Research Laboratory, ARL-TR-3748, ADA509431 (2006)

    Google Scholar 

  19. D.L. Fried, Optical heterodyne detection of an atmospherically distorted signal wave front. Proc. IEEE 55(1), 57–67 (1967)

    Article  Google Scholar 

  20. D.L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 56(10), 1372–1379 (1966)

    Article  ADS  Google Scholar 

  21. D.L. Fried, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. 55(11), 1427–1435 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Muschinski, Phase-factor spectra of turbulent phase screens. J. Opt. Soc. Am. A 38(9), 1339–1348 (2021)

    Article  ADS  Google Scholar 

  23. V.I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961). Chap. 8. Translated by R. A. Silverman, Dover publications, Inc., New York, 1967

    Book  Google Scholar 

  24. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, 2nd edn. (SPIE Press, Washington, 2005). Chap. 6

    Book  Google Scholar 

  25. D.L. Fried, Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72(1), 52–61 (1982)

    Article  ADS  Google Scholar 

  26. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, 2nd edn. (SPIE Press, Washington, 2005). Chap. 14

    Book  Google Scholar 

  27. D.P. Greenwood, Bandwidth specification for adaptive optics systems. J. Opt. Soc. Am. 67(3), 390–393 (1977)

    Article  ADS  Google Scholar 

  28. H.T. Yura, W.G. McKinley, Optical scintillation statistics for IR ground-to-space laser communication systems. Appl. Opt. 22(21), 3353–3358 (1983)

    Article  ADS  Google Scholar 

  29. R.S. Lawrence, J.W. Strohbehn, A survey of clear-air propagation effects relevant to optical communications. Proc. IEEE 58(10), 1523–1545 (1970)

    Article  Google Scholar 

  30. Y. Cheon, A. Muschinski, Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence. J. Opt. Soc. Am. A 24(2), 415–422 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.H. Churnside, R.J. Lataitis, Wander of an optical beam in the turbulent atmosphere. Appl. Opt. 29(7), 926–930 (1990)

    Article  ADS  Google Scholar 

  32. T. Chiba, Spot dancing of the laser beam propagated through the turbulent atmosphere. Appl. Opt. 10(11), 2456–2461 (1971)

    Article  ADS  Google Scholar 

  33. L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects. Opt. Eng. 45(7), 076001-1–076001-12 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Takayama .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takayama, Y. (2024). Lightwave Propagation in the Air. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics