Skip to main content

Optical Switching Systems and Flex-Grid Technologies

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence

Abstract

Driven by future (beyond 5G and 6G) services and applications, optical networks are required to support an ever increasing and more dynamic data traffic in a flexible and efficient manner. In this evolutionary scenario, an optical bandwidth allocation based on a fixed-grid spectrum is no longer suitable for addressing the envisioned multi-Tb/s capacity links and dynamic connectivity, while ensuring an optimal usage of the network resources and the available infrastructure. Thus, optical switching systems require advanced technologies to support this novel flexible paradigm.

This chapter presents the fundamental building blocks, the network elements and technologies enabling elastic optical networks, flex-grid channel allocation and routing, as well as multiple and advanced switching operations. This includes the bandwidth-variable optical cross-connect, wavelength selective switch, and reconfigurable optical add/drop multiplexer, as well as flexible transceivers, such as the (sliceable) bandwidth/bitrate variable transceiver, and software defined networking-based control and orchestration. Commercial technologies as well as latest research solutions currently under investigation are presented and discussed highlighting a path for optical switching systems enabling flexible operation and dynamic high-capacity connectivity for both optical and data center networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. ITU-T., Spectral grids for WDM applications: CWDM wavelength grid, G.694.2 Recommendation

    Google Scholar 

  2. ITU-T, Spectral grids for WDM applications: DWDM frequency grid, G.694.1 recommendation, June 2002, Feb. 2012, Oct. 2020

    Google Scholar 

  3. M. Jinno et al., Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)

    Article  Google Scholar 

  4. O. Gerstel et al., Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50, s12–s20 (2012)

    Article  Google Scholar 

  5. N. Sambo et al., Next generation sliceable bandwidth variable transponders. IEEE Commun. Mag. 53(2), 163–171 (2015)

    Article  MathSciNet  Google Scholar 

  6. Y. Li, L. Gao, G. Shen, L. Peng, Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited]. J. Opt. Commun. Netw. 4(11), B58–B67 (2012)

    Article  Google Scholar 

  7. Y. Ma, L. Stewart, J. Armstrong, I.G. Clarke, G. Baxter, Recent progress of wavelength selective switch. J. Lightw. Technol. 39(4), 896–903 (2021)

    Article  ADS  Google Scholar 

  8. N. Calabretta, W. Miao, K. Mekonnen, K. Prifti, SOA based photonic integrated WDM cross-connects for optical metro-access networks. Appl. Sci. 7(9), 865 (2017)

    Article  Google Scholar 

  9. R. Kraemer, F. Nakamura, M. van den Hout, S. van der Heide, C. Okonkwo, H. Tsuda, A. Napoli, N. Calabretta, Multi-band photonic integrated wavelength selective switch. J. Lightw. Technol. 39(19), 6023–6032 (2021)

    Article  ADS  Google Scholar 

  10. J.M. Fabrega et al., On the filter narrowing issues in elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 8(7), A23–A33 (2016)

    Article  Google Scholar 

  11. J.L. Vizcaíno, Y. Ye, V. López, F. Jiménez, R. Duque, P.M. Krummrich, Cost evaluation for flexible-grid optical networks, in 2012 IEEE Globecom Workshops, 2012, pp. 358–363

    Google Scholar 

  12. C. Rottondi, M. Tornatore, F. Puleio, S. Raavi, A. Pattavina, G. Gavioli, On the benefits of elastic transponders in optical metro networks, in Proc. OFC 2012

    Google Scholar 

  13. X. Zhou, W. Jia, Y. Ma, N. Deng, G. Shen, A. Lord, An ultradense wavelength switched network. IEEE/OSA J. Lightw. Technol. 35, 2063–2069 (2017)

    Article  ADS  Google Scholar 

  14. A. Morea et al., Throughput comparison between 50-GHz and 37.5-GHz grid transparent networks. J. Opt. Commun. Netw. 7, A293–A300 (2015)

    Article  Google Scholar 

  15. M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects. IEEE Commun. Mag. 49(10), 164–172 (2011). https://doi.org/10.1109/MCOM.2011.6035831

    Article  Google Scholar 

  16. M. Svaluto Moreolo, J.M. Fabrega, L. Nadal, F.J. Vílchez, A. Mayoral, R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, M. Nishihara, et al., SDN-enabled sliceable BVT based on multicarrier technology for multiflow rate/distance and grid adaptation. IEEE/OSA J. Lightw. Technol. 34, 1516–1522 (2016)

    Article  ADS  Google Scholar 

  17. J. Cioffi, Data transmission theory, chapter 4 of course text for EE379A-B and EE479, Stanford University. (Online). Available: www.stanford.edu/group/cioffi/book/

  18. J. Bäck, P. Wright, J. Ambrose, A. Chase, M. Jary, F. Masoud, N. Sugden, G. Wardrop, A. Napoli, J. Pedro, et al., Capex savings enabled by point-to-multipoint coherent pluggable optics using digital subcarrier multiplexing in metro aggregation networks, in Proc. ECOC 2020

    Google Scholar 

  19. Infinera XR Optics. Available: https://www.infinera.com/innovation/xr-optics

  20. M. Svaluto Moreolo, J.M. Fabrega, L. Nadal, Sliceable BVT evolution towards programmable multi-Tb/s networking. Electronics 8(12), 1476 (2019)

    Google Scholar 

  21. M. Svaluto Moreolo et al., Programmable VCSEL-based photonic system architecture for future agile Tb/s metro networks. J. Opt. Commun. Netw. 13(2), A187–A199 (2021)

    Article  Google Scholar 

  22. E. Riccardi, P. Gunning, Ó.G. de Dios, M. Quagliotti, V. López, A. Lord, An operator view on the introduction of White boxes into optical networks. J. Lightw. Technol. 36(15), 3062–3072 (2018)

    Article  ADS  Google Scholar 

  23. L. Nadal et al., SDN-enabled S-BVT for disaggregated networks: design, implementation and cost analysis. IEEE/OSA J. Lightw. Technol 38(11), 3037–3043 (2020)

    Article  ADS  Google Scholar 

  24. P.J. Winzer, D.T. Neilson, A.R. Chraplyvy, Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018)

    Article  ADS  Google Scholar 

  25. R. Muñoz, et al., SDN-enabled sliceable multi-dimensional (spectral and spatial) transceiver controlled with YANG/NETCONF, in Proc. OFC, San Diego, CA, USA, 11–15 March 2018, p. M2A.5

    Google Scholar 

  26. M. Svaluto Moreolo, J.M. Fabrega, L. Nadal, R. Martínez, R. Casellas, Synergy of photonic technologies and software-defined networking in the hyperconnectivity era. IEEE/OSA J. Lightw. Technol. 37(16), 3902–3910 (2019)

    Article  ADS  Google Scholar 

  27. Y. Sakamaki, T. Kawai, M. Fukutoku, Next-generation optical switch technologies for realizing ROADM with more flexible functions. NTT Tech. Rev. 12(1), 1–5 (2014)

    Google Scholar 

  28. D.M. Marom, P.D. Colbourne, A. D’Errico, N.K. Fontaine, Y. Ikuma, R. Proietti, L. Zong, J.M. Rivas-Moscoso, I. Tomkos, Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking [invited]. J. Opt. Commun. Netw. 9(1), 1–26 (2017)

    Google Scholar 

  29. W. Chen, T. Yang, P. Wang, J. Zhang, Q. Fu, H. Lu, B. Zhang, T. Dai, G. Wang, Y. Wang, J. Yang, Flexible-grid wavelength-selective switch based on silicon microring resonators with interferometric couplers. J. Lightwave Technol. 36(16), 3344–3353 (2018)

    Article  ADS  Google Scholar 

  30. F. Testa, S. Tondini, F. Gambini, P. Velha, A. Bianchi, C. Kopp, M. Hofbauer, C.L. Manganelli, N. Zecevic, S. Faralli, G. Pares, R. Enne, A. Serrano, B. Goll, G. Fontana, A. Chalyan, J.M. Lee, P. Pintus, G. Chiaretti, H. Zimmermann, L. Pavesi, C.J. Oton, S. Stracca, Integrated reconfigurable silicon photonics switch matrix in IRIS project: technological achievements and experimental results. J. Lightwave Technol. 37(2), 345–355 (2019)

    Article  ADS  Google Scholar 

  31. S. Chen, Y. Shi, S. He, D. Dai, Compact Eight-Channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon. Technol. Lett. 28(17), 1874–1877 (2016)

    Article  ADS  Google Scholar 

  32. S. Wang, D. Dai, G.G.D.L. Mx, H.G.X. Fq, Silicon based reconfigurable optical add drop multiplexer for hybrid MDM WDM systems, in 2017 Optical Fiber Communications Conference and Exhibition (OFC), vol. 1, no. c, pp. 1–3

    Google Scholar 

  33. Gigacom, http://www.automatingfiberspace.com/

  34. K. Watanabe, R. Kasahara, Y. Hashizume, Extremely-low-power-consumption thermo-optic switch with silicon-silica hybrid structure. NTT Tech. Rev. 8(2), 1–5 (2010)

    Google Scholar 

  35. R. Ryf et al., 1296-port MEMS transparent optical crossconnect with 2.07 Petabit/s switch capacity, OFC 2001, Postdeadline paper PD28, 2001

    Google Scholar 

  36. N. Parsons, R. Jensen, A. Hughes, High radix all-optical switches for software-defined datacentre networks, ECOC 2016 paper W.2.F.1 (Invited)

    Google Scholar 

  37. T. Seok, N. Quack, S. Han, M. Wu, 50x50 digital Silicon photonic switches with MEMS-actuated adiabatic couplers, in Proc OFC 2015, M2B.4

    Google Scholar 

  38. H. Mulvad, A. Parker, B. King, D. Smith, M. Kovacs, S. Jain, J. Hayes, M. Petrovich, D. Richardson, N. Parsons, Beam-steering all-optical switch for multi-core fibers, in Proc OFC 2017, Tu2C.4

    Google Scholar 

  39. S. Han, T.J. Seok, K. Yu, N. Quack, R.S. Muller, M.C. Wu, 50x50 polarization-insensitive silicon photonic MEMS switches: design and experiment, in 42nd European Conference on Optical Communication, Paper Th.3.A.5, Dusseldorf, Germany, 2016

    Google Scholar 

  40. M. Iwama, M. Takahashi, M. Kimura, Y. Uchida, J. Hasesawa, R. Kawahara, N. Kagi, LCOS-based flexible grid 1×40 wavelength selective switch using planar lightwave circuit as spot size converter, in 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015

    Google Scholar 

  41. K. Tanizawa, K. Suzuki, M. Toyama, M.U. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima, Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 23, 17599–17606 (2015)

    Article  ADS  Google Scholar 

  42. Epiphotonics, www.epiphotonics.com

  43. H. Kouketsu, S. Kawasaki, N. Koyama, A. Takei, T. Taniguchi, Y. Matsushima, K. Utaka, High-speed and compact non-blocking 8×8 InAlGaAs/InAlAs Mach-Zehnder-type optical switch fabric, in Optical Fiber Communication Conference, M2K.3, 2014

    Google Scholar 

  44. H. Okayama, M. Kawahara, Prototype 32×32 optical switch matrix. Electron. Lett. 30(14), 1128–1129 (1994)

    Article  ADS  Google Scholar 

  45. Y. Muranaka, T. Segawa, R. Takahashi, Integrated fat-tree optical switch with cascaded MZIs and EAM-Gate Array, in 21st OptoElectronics and Communications Conference/International Conference on Photonics in Switching 2016 (OECC/PS 2016), Paper WF3–2, Niigata, Japan, July 2016

    Google Scholar 

  46. Z. Cao, R. Proietti, S.J.B. Yoo, Hi-LION: hierarchical large-scale interconnection optical network with AWGRs. J. Opt. Commun. Netw. 7(1), A97–A105 (2015)

    Article  Google Scholar 

  47. T. Segawa, M. Nada, M. Nakamura, Y. Suzaki, R. Takahashi, An 8×8 broadcast-and-select optical switch based on monolithically integrated EAM-gate array, in European Conference Exhibition Optical Communication, Paper TuT4.2, London, U.K., 2013

    Google Scholar 

  48. R. Luijten, R. Grzybowski, The OSMOSIS optical packet switch for supercomputers, in Optical Fiber Communication Conference, 2009

    Google Scholar 

  49. H. Wang, A. Wonfor, K.A. Williams, R.V. Penty, I.H. White, Demonstration of a lossless monolithic 16x16 QW SOA switch, in 35th European Conference on Optical Communication, Vienna, 2009

    Google Scholar 

  50. T. Tanemura, I. Soganci, T. Oyama, T. Ohyama, S. Mino, K. Williams, N. Calabretta, H.J.S. Dorren, Y. Nakano, Large-capacity compact optical buffer based on InP integrated phased-Array switch and coiled fiber delay lines. IEEE/OSA J. Lightwave Technol. 29(4), 396–402 (2011)

    Article  ADS  Google Scholar 

  51. D. Kreutz, F.M.V. Ramos, P.E. Veríssimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  52. ONF, OpenFlow-Enabled SDN and network functions virtualization, ONF Solution Brief, February 2014

    Google Scholar 

  53. OpenStack, https://www.openstack.org/

  54. ETSI GS NFV 002, Network Functions Virtualization (NFV), Architectural Framework, 2014

    Google Scholar 

  55. X. Foukas, G. Patounas, A. Elmokashfi, M.K. Marina, Network slicing in 5G: survey and challenges. IEEE Commun. Mag. 55(5), 94–100 (2017)

    Article  Google Scholar 

  56. X. Xue, F. Wang, F. Agraz, A. Pagès, B. Pan, F. Yan, X. Guo, S. Spadaro, N. Calabretta, SDN-controlled and orchestrated OPSquare DCN enabling automatic network slicing with differentiated QoS provisioning. J. Lightwave Technol. 38(6), 1103–1112 (2020)

    Article  ADS  Google Scholar 

  57. W. Miao, S. Di Lucente, J. Luo, H. Dorren, N. Calabretta, Low latency and efficient optical flow control for intra data center networks. Opt. Express 22(1), 427–434 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Svaluto Moreolo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Svaluto Moreolo, M., Spadaro, S., Calabretta, N. (2023). Optical Switching Systems and Flex-Grid Technologies. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics