Skip to main content

Sonocrystallization of Lactose

Theory, Practice, and Future Directions

  • Living reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Sonocrystallization as an emerging science and technology has great potential to improve and change current methods of processing, resulting in significant cost and energy savings and opening up new applications in lactose crystallization.

Lactose crystallization is reported to be slow and unpredictable. Seeding is not used in industry and nucleation is achieved by rapid cooling. The problem with conventional lactose crystallization is long induction times and large metastable zone width which makes the process unpredictable and difficult to control. Therefore, improved control of the lactose crystallization process has particular significance for the dairy industry.

In the last 10 years, there have been a significant number of reported applications of ultrasound in lactose crystallization. Most of the work reported utilized ethanol as anti-solvent to provide methods of whey proteins and lactose recovery without concentrating to high solid content. More recently, sonocrystallization from aqueous lactose solutions and concentrated whey has been reported for pharmaceutical and food industry applications. With the availability of equipment of industrial scale, it is anticipated that sonocrystallization of lactose in industrial scale may become a reality in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Visser RA (1980) A natural crystal growth retarder in lactose. Neth Milk Dairy J 34:255–275

    CAS  Google Scholar 

  2. Nickerson TA (1988) Fundamentals of dairy chemistry, 3rd edn. Van Nostrand Reihold Co, New York

    Google Scholar 

  3. Fries DC, Rao ST, Sundaralingam M (1971) Structural chemistry of carbohydrates III. Crystal and molecular structure of alpha lactose monohydrate. Acta Crystallogr B27:994

    Article  Google Scholar 

  4. Michaels AS, Van Kreveld A (1966) Influence of additives on growth rates in lactose crystals. J Dairy Sci 20:163–181

    CAS  Google Scholar 

  5. Dincer TD (2001) Mechanisms of lactose crystallisation. Ph.d., Curtin University of Technology, Perth

    Google Scholar 

  6. Zadow JG (1992) Whey and lactose processing. Elsevier Applied Science, New York

    Book  Google Scholar 

  7. Lifran EV, Vu TTL, Durham RJ, Hourigan JA, Sleigh RW (2006) Lactose phosphate and its origin in cheesemaking: a case study. Australian J Dairy Technol 61(2)

    Google Scholar 

  8. Lifran EV, Vu TTL, Durham RJ, Hourigan JA, Sleigh RW (2007) Crystallisation kinetics of lactose in presence of lactose phosphate. Powder Technol 179:43–54

    Article  CAS  Google Scholar 

  9. Wong SY (2011) A systematic approach to optimization of industrial lactose crystallization. University of Wisconsin-Madison, USA

    Google Scholar 

  10. Tavare NS (1995) Industrial crystallization: process simulation analysis and design. Plenum Press, New York

    Book  Google Scholar 

  11. Mullin JW (2001) Crystallization, 3rd edn. Butterworth-Heinemann Ltd., Oxford

    Google Scholar 

  12. Hartel RW (2001) Crystallisation in foods. Barbosa-Canovas, G.V. An Aspen Publication, Gaithersburg, Maryland, USA

    Google Scholar 

  13. Paradkar A, Dhumal R (2012) Ultrasound assisted particle engineering. In: Chen D, Sharma SJ, Mudhoo A (eds) Handbook on applications of ultrasound sonochemistry for sustainability. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  14. Luque de Castro M, Priego-Capote F (2007) Ultrasound-assisted crystallisation (sonocrystallisation). Ultrason Sonochem 14:717–724

    Article  CAS  Google Scholar 

  15. Deora NS, Misra NN, Deswal A, Mishra HN, Cullen PJ, Tiwari BK (2013) Ultrasound for improved crystallisation in food processing. Food Eng Rev 5:36–44

    Article  Google Scholar 

  16. Zisu B, Bhaskaracharya R, Kentish S, Ashokkumar M (2010) Ultrasonic processing of dairy systems in large reactors. Ultrason Sonochem 17:1075–1081

    Article  CAS  Google Scholar 

  17. Mason T, Lorimer J (2002) Applied sonochemistry. Wiley-VCH, Weinhiem

    Book  Google Scholar 

  18. Li H, Li H, Guo Z, Liu Y (2006) The application of power ultrasound to reaction crystallisation. Ultrason Sonochem 13:359–363

    Article  Google Scholar 

  19. Li H, Wang J, Boa Y, Guo Z, Zhang M (2003) Rapid sonocrystallisation in salting out process. J Cryst Growth 247:192–198

    Article  CAS  Google Scholar 

  20. Louhi-Kultanen M, Karjalainen M, Rantanen J, Huhtanen M, Kallas J (2006) Crystallisation of glycine with ultrasound. Int J Pharm 320:23–29

    Article  CAS  Google Scholar 

  21. Lyczko N, Espitalier F, Louisnard O, Schwarzentruber J (2002) Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate. Chem Eng J (Lausanne) 86:233–241

    Article  CAS  Google Scholar 

  22. Virone C, Kramer H, Rosmalen V (2006) Primary nucleation induced by ultrasonic cavitation. J Cryst Growth 294:9–15

    Article  CAS  Google Scholar 

  23. Povey MJ, Mason TJ (eds) (1998) Ultrasound in food processing. Blackie Academic & Professional, London

    Google Scholar 

  24. Kentish S, Ashokkumar M (2011) The physical and chemical effects of ultrasound. In: Feng HO, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, Dordrecht

    Google Scholar 

  25. Nalajala V, Moholkar V (2011) Investigation in the physical mechanisms of sonocrystallisation. Ultrason Sonochem 18:345–355

    Article  CAS  Google Scholar 

  26. Ruecroft G, Hipkiss D, Maxted T (2005) Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Proc Res Dev 9:923–932

    Google Scholar 

  27. Dennehy RD (2003) Particle engineering using power ultrasound. Org Proc Res Dev 7:1002–1006

    Article  CAS  Google Scholar 

  28. Herrington BL (1934) Some physical chemical properties of lactose I. The spontaneous crystallisation of supersaturated lactose solution. J Dairy Sci 17:533

    Article  CAS  Google Scholar 

  29. Bhargava A, Jelen P (1996) Lactose solubility and crystal growth as affected by mineral impurities. J Food Sci 61(1):180–184

    Article  Google Scholar 

  30. Visser RA (1982) Supersaturation of alpha lactose in aqueous solutions in mutarotation equilibrium. Neth Milk Dairy J 36:89–101

    CAS  Google Scholar 

  31. Fox P, McSweeney P (1998) Dairy chemistry and biochemistry. Blackie Academic and Professional, London

    Google Scholar 

  32. Butler B (1998) Modelling industrial lactose crystallisation. Ph.D. University of Queensland, Brisbane, Australia

    Google Scholar 

  33. Wong SY, Bund RK, Connelly RK, Hartel RW (2012) Designing a lactose crystallisation process based on dynamic modeling. J Food Eng 111:642–654

    Article  CAS  Google Scholar 

  34. Vu TTL, Hourigan JA, Sleigh RW, Ang MH, Tade MO (2003) Metastable control of cooling crystallisation. In: European symposium on computer aided process engineering, 2003. pp 527–532

    Google Scholar 

  35. Wong SY, Bund RK, Connelly RK, Hartel RW (2011) Determination of the dynamic metastable limit for α-lactose monohydrate crystallisation. Int Dairy J 21:839–847

    Article  CAS  Google Scholar 

  36. Madsen HEL, Boistelle R (1979) Growth kinetics of the (001) face of hexatriacontane in solution. J Cryst Growth 46:681–690

    Article  Google Scholar 

  37. Mcleod J (2007) Nucleation and growth of alpha lactose monohydrate. Ph.D., Massey University, Palmerston North, New Zealand

    Google Scholar 

  38. Griffiths R, Paramo G, Merson R (1982) Preliminary investigation of lactose crystallization using the population balance technique. Food Process Eng 78(218):118–128

    CAS  Google Scholar 

  39. Shi Y, Liang B, Hartel RW (1990) Crystallization kinetics of alpha lactose monohydrate in a continuous cooling crystallizer. J Food Sci 55(3):817–820

    Article  CAS  Google Scholar 

  40. Kauter M (2003) The effect of impurities on lactose crystallisation. University of Queensland, Brisbane, Australia

    Google Scholar 

  41. van Kreveld A, Michaels A (1965) Measurement of crystal growth of alpha lactose. J Dairy Sci 48:259–265

    Article  CAS  Google Scholar 

  42. Visser RA (1982) Growth of non-ionic lactose at various temperatures and supersaturations. Neth Milk Dairy J 36:167–193

    CAS  Google Scholar 

  43. Shi Y, Hartel W, Liang B (1989) Formation and growth phenomena of lactose nuclei under contact nucleation conditions. J Dairy Sci 72(11):2906–2915

    Article  CAS  Google Scholar 

  44. Arellano MP, Miguel J, Bouchon P (2004) Development of a digital video-microscopy technique to study lactose crystallisation kinetics in situ. Carbohydr Res 339:2721–2730

    Article  Google Scholar 

  45. Dincer TD, Ogden MI, Parkinson GM (2009) In situ investigation of growth rates and growth rate dispersion of α-lactose monohydrate. J Cryst Growth 311:1352–1358

    Article  CAS  Google Scholar 

  46. Jelen P, Coulter S (1973) Effects of supersaturation and temperatures on the growth of lactose crystals. J Food Sci 38:1182–1185

    Article  Google Scholar 

  47. Liang B, Shi Y, Hartel RW (1991) Growth rate dispersion effects on lactose crystal size distributions from continuous cooling crystalliser. J Food Sci 56(3):848–854

    Article  Google Scholar 

  48. Hourigan JA, Lifran EV, Vu LTT, Listiohadi Y, Sleigh RW (2012) Lactose: chemistry, processing and utilisation. In: Augustin GWSMA (ed) Advances in dairy ingredients. Wiley-Blackwell & IFT Press, Oxford, pp 31–69

    Google Scholar 

  49. Patel SR, Murthy VP (2012) Lactose recovery processes from whey: a comparative study based on Sonocrystallisation. Sep Purif Rev 41:251–266

    Article  CAS  Google Scholar 

  50. Westergaard V (2010) Milk powder technology evaporation and spray drying. Niro A/S, Soeborg

    Google Scholar 

  51. Vu TTL, Durham RJ, Hourigan JA, Sleigh RW (2003) Fine seed preparation for crystallisation process. In: Chemeca 2003: products and processes for the 21st century, Adelaide, 2003. Institute of Engineers, pp 964–971

    Google Scholar 

  52. Bund R, Pandit A (2007) Sonocrystallisation: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152

    Article  CAS  Google Scholar 

  53. Kougoulos E, Marziano I, Miller PR (2010) Lactose particle engineering: influence of ultrasound and anti-solvent on crystal growth and habit. J Cryst Growth 312:3509–3520

    Article  CAS  Google Scholar 

  54. Bund RK, Pandit AB (2007) Rapid lactose recovery from paneer whey using sonocrystallisation: a process optimisation. Chem Eng Process 46:846–850

    Article  CAS  Google Scholar 

  55. Bund RK, Pandit AB (2007) Rapid lactose recovery from buffalo whey by use of [‘]anti-solvent, ethanol’. J Food Eng 82(3):333–341

    Article  CAS  Google Scholar 

  56. Bund R (2005) Waste management and recovery of valuable products from food industry waste streams. Mumbai University, Mumbai

    Google Scholar 

  57. Patel S, Murthy Z (2009) Ultrasound assisted crystallisation for the recovery of lactose in an anti-solvent acetone. Cryst Res Technol 44(8):889–896

    Article  CAS  Google Scholar 

  58. Patel SR, Murthy VP (2010) Optimisation of process parameters by taguchi method in the recovery of lactose from whey using sonocrystallisation. Cryst Res Technol 45(7):747–752

    Article  CAS  Google Scholar 

  59. Dhumal R, Biradar S, Paradkar A, York P (2008) Ultrasound assisted engineering of lactose crystals. Pharm Res 25(12):2835–2843

    Article  CAS  Google Scholar 

  60. Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer TD (2014) Sonocrystallisation of lactose in concentrated whey. Ultrason Sonochem 21:2117–2121

    Article  CAS  Google Scholar 

  61. Manufacturing Chemists (2009) Particle engineering with ultrasound. Manufacturing Chemists, London

    Google Scholar 

  62. Dincer TD, Zisu B, Vallet CGMR, Jayasena V, Palmer M, Weeks M (2014) Sonocrystallisation of lactose in aqueous system. Int Dairy J 35:43–48

    Article  CAS  Google Scholar 

  63. Kuldipkumar A, Kwon GS, Zhang GGZ (2007) Determination of growth mechanism of tolazamide by induction time measurement. Cryst Growth Des 7(2):234–242

    Article  CAS  Google Scholar 

  64. van Kreveld A (1969) Growth rates of lactose crystals in solutions of stable anhydrous alpha lactose. Neth Milk Dairy J 23:158–275

    Google Scholar 

  65. Dincer TD, Ogden MI, Parkinson GM (2009) Crystal growth mechanisms of the (010) face of alpha lactose monohydrate crystals. J Cryst Growth 311:2427–2432

    Article  CAS  Google Scholar 

  66. Zisu B (2014) An innovative approach to tailoring the functional characteristics of dairy ingredients. In: Paper presented at the IFT14 Annual Meeting and Food Expo, New Orleans, LA, USA, June 21–24, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuna D. Dincer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Dincer, T., Zisu, B. (2015). Sonocrystallization of Lactose. In: Ashokkumar, M. (eds) Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-470-2_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-470-2_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-287-470-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics