Skip to main content

Toxic Tau Aggregation in AD

  • Living reference work entry
  • First Online:
Handbook of Neurodegenerative Disorders

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that is caused by multiple factors, has a complicated physiopathology, and the causes of its onset are not well understood. An increasing body of clinical and experimental evidence points to a possible causal role of tau protein detachment from microtubules followed by tau aggregation in Alzheimer’s disease. This chapter provides a summary of what is currently known about how the tau protein becomes hyperphosphorylated, aggregated, and then transformed into a neurotoxic protein to trigger the primary pathophysiological mechanisms and anatomical changes in the brains of Alzheimer’s disease patients, as well as the connection between tau and amyloid beta (Aβ) and different AD biomarkers. Additionally, neurobiological processes that may be shared by different tauopathies and AD are investigated in this chapter. Emerging insights regarding the role of tau and its dysfunction in altering neuronal cascades and neuroplasticity and, as a result, initiating brain pathology in addition to tau-based immunotherapy are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abounit S, Wu J, Duff K, Victoria G, Zurzolo C (2016) Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10:344–351

    Article  CAS  Google Scholar 

  • Arboleda-Velasquez JF, Lopera F, O’Hare M, Delgado-Tirado S, Marino C, Chmielewska N et al (2019) Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med 25:1680–1683

    Article  CAS  Google Scholar 

  • Bittar A, Bhatt N, Kayed R (2020) Advances and considerations in AD Tau-targeted immunotherapy. Neurobiol Dis 134:1–26

    Article  Google Scholar 

  • Blennow K, Shaw LM, Stomrud E et al (2019) Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Abeta(1-42), pTau and tTau CSF immunoassays. Sci Rep 9:19024

    Article  CAS  Google Scholar 

  • Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. Am J Pathol 171:2012–2020

    Article  CAS  Google Scholar 

  • Brouhard GJ, Rice LM (2018) Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol 19:451–463

    Article  CAS  Google Scholar 

  • Campion D, Flaman JM, Brice A et al (1995) Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet 4:373–377

    Article  Google Scholar 

  • ClinicalTrials.gov (2018) A study of LY3303560 in healthy participants and participants with Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2019a) 24 Months safety and efficacy study of AADvac1 in patients with mild Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2019b) A study of LY3303560 in participants with mild cognitive impairment or Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2020) Single-ascending-dose study of BIIB076 in healthy volunteers and participants with Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2021a) A study of LY3303560 in participants with early symptomatic Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2021b) A study of Semorinemab in patients with moderate Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2021c) A study to evaluate the efficacy and safety of ABBV-8E12 in subjects with early Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2021d) A study to test the efficacy, safety, and tolerability of Bepranemab (UCB0107) in patients with mild cognitive impairment or mild Alzheimer’s disease (AD)

    Google Scholar 

  • ClinicalTrials.gov (2021e) An extension study of ABBV-8E12 in early Alzheimer’s disease

    Google Scholar 

  • ClinicalTrials.gov (2021f) Phase 2 study of BIIB092 in participants with early Alzheimer’s disease

    Google Scholar 

  • Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14(7):399–415

    Article  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late-onset families. Science 261:921–923

    Article  CAS  Google Scholar 

  • Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, Akoury E, Tepper K, Muller H, Baldus M, Griesinger C, Zweckstetter M, Mandelkow E, Vijayan V, Lange A (2012) Beta-sheet core of tau paired helical filaments revealed by solid-state NMR. J Am Chem Soc 134:13982–13989

    Article  CAS  Google Scholar 

  • Dam T, Boxer AL, Golbe LI, Höglinger GU, Morris HR, Litvan I et al (2021) Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med 7(8):1451–1457

    Article  Google Scholar 

  • DeVos S, Corjuc B, Oakley D, Nobuhara C, Bannon R, Chase A et al (2018) Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci 12:267

    Article  Google Scholar 

  • Díaz-Hernández M, Gómez-Ramos A, Rubio A, Gómez-Villafuertes R, Naranjo J, Miras-Portugal M et al (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  Google Scholar 

  • Doecke JD, Ward L, Burnham SC et al (2020) Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging. Alzheimers Res Ther 12(36)

    Google Scholar 

  • Duan Y, Ye T, Qu Z et al (2022) Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer’s disease alleviates amyloid-related pathologies in mice. Nat Biomed Eng 6:168–180

    Article  CAS  Google Scholar 

  • Dubois B, Villain N, Frisoni GB et al (2021) Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol 20:484–496

    Article  CAS  Google Scholar 

  • Elghazawy NH, Zaafar D, Hassan RR, Mahmoud MY, Bedda L, Bakr AF, Arafa RK (2022) Discovery of new 1,3,4-oxadiazoles with dual activity targeting the cholinergic pathway as effective anti-alzheimer agents. ACS Chem Neurosci 13(8):1187–1205

    Article  CAS  Google Scholar 

  • Gearing M, Mori H, Mirra S (1996) Aβ-peptide length and apolipoprotein E genotype in Alzheimer’s disease. Ann Neurol 9:395–399

    Article  Google Scholar 

  • Gibbons G, Lee V, Trojanowski J (2019) Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol 76:101–108

    Article  Google Scholar 

  • Glenner GG, Wong C (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  Google Scholar 

  • Goldhardt JP, Weinberger F, Müller-Sarnowski J et al (2020) Elecsys CSF assays accurately distinguish AD from frontotemporal lobar degeneration. J Prev Alzheimers Dis 7:S83

    Google Scholar 

  • Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37(4):673–681

    Article  Google Scholar 

  • Gotz J, Chen F, van Dorpe J, Nitsch R (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Article  CAS  Google Scholar 

  • Guo T, Noble W, Hanger D (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704

    Article  CAS  Google Scholar 

  • Gusella JF, Persichetti F, MacDonald ME (1997) The genetic defect causing Huntington’s disease: repeated in other contexts? Mol Med 3:238–232

    Article  CAS  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  Google Scholar 

  • Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P (2019) Advantages and disadvantages of the use of the CSF Amyloid beta (Abeta) 42/40 ratio in the diagnosis of Alzheimer’s disease. Alzheimers Res Ther 11(34)

    Google Scholar 

  • Hardy J, Selkoe D (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  Google Scholar 

  • He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, Zhang B, Gathagan RJ, Yue C, Dengler C, Stieber A, Nitla M, Coulter DA, Abel T, Brunden KR, Trojanowski JQ, Lee V (2018) Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38

    Article  CAS  Google Scholar 

  • Hendriks L, van Duijn CM, Cras P et al (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nat Genet 1:218–221

    Article  CAS  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski J (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  Google Scholar 

  • Jeganathan S, Von Bergen M, Mandelkow EEM, Mandelkow E (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47:10526–10539

    Article  CAS  Google Scholar 

  • Judge D, Roberts J, Khandker RK, Ambegaonkar B, Black C (2019) Physician practice patterns associated with diagnostic evaluation of patients with suspected mild cognitive impairment and Alzheimer’s disease. Int J Alzheimers Dis 2019:4942562

    Google Scholar 

  • Kanmert D, Cantlon A, Muratore C, Jin M, O’malley T, Lee G et al (2015) C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci 35:10851–10865

    Article  CAS  Google Scholar 

  • Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E (2018) Near-atomic model of microtubule-tau interactions. Science 360(6394):1242–1246

    Article  CAS  Google Scholar 

  • Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193

    Article  CAS  Google Scholar 

  • Kim B, Mikytuck B, Suh E, Gibbons GS, Van Deerlin VM, Vaishnavi SN et al (2021) Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathol 142(2):243–257

    Article  CAS  Google Scholar 

  • Kobayashi S, Tanaka T, Soeda Y, Almeida OFX, Takashima A (2017) Local somatodendritic translation and hyperphosphorylation of tau protein triggered by AMPA and NMDA receptor stimulation. EBioMedicine 20:120–126

    Article  Google Scholar 

  • Kopeikina K, Hyman B, Spires-Jones T (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci 3:223–233

    Article  Google Scholar 

  • Kostyszyn B, Cowburn RF, Seiger A, KjAEldgaard A, Sundstrom E (2001) Expression of presenilin-1 and Notch-1 receptor in human embryonic CNS. Neuroscience 103:885–898

    Article  CAS  Google Scholar 

  • Kounnas MZ, Moir RD, Rebeck GW et al (1995) LDL receptor–related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82:331–340

    Article  CAS  Google Scholar 

  • Kundel F, Hong L, Falcon B, Mcewan W, Michaels T, Meisl G et al (2018) Measurement of tau filament fragmentation provides insights into prion-like spreading. ACS Chem Neurosci 9:1276–1282

    Article  CAS  Google Scholar 

  • Lambert JC, Araria-Goumidi L, Myllykangas L et al (2002) Contribution of APOE promoter polymorphisms to Alzheimer’s disease risk. Neurology 59:59–66

    Article  CAS  Google Scholar 

  • Le M, Kim W, Lee S, Mckee A, Hall G (2012) Multiple mechanisms of extracellular tau spreading in a non-transgenic tauopathy model. Am J Neurodegener Dis 1:316–333

    Google Scholar 

  • Leroy K, Ando K, Heraud C, Yilmaz Z, Authelet M, Boeynaems JM, Buee L, De Decker R, Brion J (2010) Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis 19:705–719

    Article  CAS  Google Scholar 

  • Levy E, Carman MD, Fernandez-Madrid IJ et al (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    Article  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  CAS  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  Google Scholar 

  • Liu PP, Xie Y, Meng XY, Kang J (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 4(9)

    Google Scholar 

  • Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G, Ledermann B, Gotz J, Van Leuven F, Goris J, Janssens V (2011) Mice lacking phosphatase PP2A subunit PR61/B’delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 108:6957–6962

    Article  CAS  Google Scholar 

  • Maina MB, Bailey LJ, Wagih S et al (2018) The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathol Commun 6(1):79

    Article  Google Scholar 

  • Mamun AA, Uddin MS, Mathew B, Ashraf G (2020) Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res 15(8):1417–1420

    Article  Google Scholar 

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  Google Scholar 

  • McGeer PL, Kawamata T, McGeer E (1998) Localization and possible functions of presenilins in brain. Rev Neurosci 9(1–15)

    Google Scholar 

  • Meyer PF, Pichet Binette A, Gonneaud J, Breitner JCS, Villeneuve S (2020) Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography. JAMA Neurol 77:508–516

    Article  Google Scholar 

  • Miller MB, Huang AY, Kim J et al (2022) Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604:714–722

    Article  CAS  Google Scholar 

  • Min S et al (2021) Absence of coding somatic single nucleotide variants within well-known candidate genes in late-onset sporadic Alzheimer’s disease based on the analysis of multi-omics data. Neurobiol Aging 108:207–209

    Article  CAS  Google Scholar 

  • Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow E (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J Neurosci 28:737–748

    Article  CAS  Google Scholar 

  • Mullard A (2021) Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov 20(1):3–5

    Article  CAS  Google Scholar 

  • Nacmias B, Latorraca S, Piersanti P et al (1995) ApoE genotype and familial Alzheimer’s disease: a possible influence on age of onset in APP717 Val--> Ile mutated families. Neurosci Lett 183:1–3

    Article  CAS  Google Scholar 

  • Nardini M, Ciasca G, Lauria A, Rossi C, Di Giacinto F, Romanò S, Di Santo R, Papi M, Palmieri V, Perini G, Basile U, Alcaro FD, Di Stasio E, Bizzarro A, De Spirito M (2022) Sensing red blood cell nano-mechanics: toward a novel blood biomarker for Alzheimer’s disease. Front Aging Neurosci 14

    Google Scholar 

  • Novak P, Schmidt R, Kontsekova E, Kovacech B, Smolek T, Katina S et al (2018) FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against Tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther 10(1):108

    Article  Google Scholar 

  • Novak P, Kovacech B, Katina S, Schmidt R, Scheltens P, Kontsekova E et al (2021) ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat Aging 1:521–534

    Article  Google Scholar 

  • Paterno G, Bell BM, Gorion KM et al (2022) Reassessment of neuronal tau distribution in adult human brain and implications for tau pathobiology. Acta Neuropathol Commun 10(94)

    Google Scholar 

  • Perea J, López E, Díez-Ballesteros J, Ávila J, Hernández F, Bolós M (2019) Extracellular monomeric tau is internalized by astrocytes. Front Neurosci 13:442

    Article  Google Scholar 

  • Pérez M, Cuadros R, Hernández F, Avila J (2016) Secretion of full-length tau or tau fragments in a cell culture model. Neurosci Lett 634:63–69

    Article  Google Scholar 

  • Rauch JN, Chen JJ, Sorum AW et al (2018) Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci Rep 8(1):6382

    Article  Google Scholar 

  • Rauch JN, Luna G, Guzman E et al (2020) LRP1 is a master regulator of tau uptake and spread. Nature. Nature 580(7803):381–385

    Article  CAS  Google Scholar 

  • Reiman EM, Arboleda-Velasquez JF, Quiroz YT, Huentelman MJ, Beach TG, Caselli RJ et al (2020) Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun 11(667)

    Google Scholar 

  • Reimand J, Groot C, Teunissen CE et al (2020) Why is amyloid-beta PET requested after performing CSF biomarkers? J Alzheimers Dis 73:559–569

    Article  Google Scholar 

  • Schindler SE, Gray JD, Gordon BA et al (2018) Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement 14:1460–1469

    Article  Google Scholar 

  • Seto M, Weiner RL, Dumitrescu L et al (2021) Protective genes and pathways in Alzheimer’s disease: moving towards precision interventions. Mol Neurodegener 16(29)

    Google Scholar 

  • Sexton C, Snyder H, Beher D et al (2022) Current directions in tau research: highlights from Tau 2020. Alzheimers Dement 18:988–1007

    Article  Google Scholar 

  • Sherrington R, Froelich S, Sorbi S et al (1996) Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 5:985–988

    Article  CAS  Google Scholar 

  • Simón D, García-García E, Royo F, Falcón-Pérez J, Avila J (2012) Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett 586:47–54

    Article  Google Scholar 

  • Sleegers K, Van Duijn CM (2001) Alzheimer’s disease: genes, pathogenesis and risk prediction. Commun Genet 4:197–120

    Google Scholar 

  • Song C, Shi J, Zhang P et al (2022) Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener 11(18)

    Google Scholar 

  • St. George-Hyslop PH (2000) Molecular genetics of Alzheimer’s disease. Biol Psychiatry 47(3):183–199

    Article  CAS  Google Scholar 

  • Stancu IC, Vasconcelos B, Terwel D, Dewachter I (2014) Models of beta-amyloid induced tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 2, 9:51

    Article  Google Scholar 

  • Struyfs H, Niemantsverdriet E, Goossens J et al (2015a) Cerebrospinal fluid P-Tau181P: biomarker for improved differential dementia diagnosis. Front Neurol 6(138)

    Google Scholar 

  • Struyfs H, Van Broeck B, Timmers M et al (2015b) Diagnostic accuracy of cerebrospinal fluid amyloid-beta isoforms for early and differential dementia diagnosis. J Alzheimers Dis 45:813–822

    Article  CAS  Google Scholar 

  • Swanson E, Breckenridge L, Mcmahon L, Som S, Mcconnell I, Bloom G (2017) Extracellular tau oligomers induce invasion of endogenous tau into the somatodendritic compartment and axonal transport dysfunction. J Alzheimers Dis 58:803–820

    Article  CAS  Google Scholar 

  • Sydow A, Van Der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O et al (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31:2511–2525

    Article  CAS  Google Scholar 

  • Tang Y-P, Gershon ES (2003) Genetic studies in Alzheimer’s disease. Dialogues Clin Neurosci 5(1):17–26

    Article  Google Scholar 

  • Tang MX, Stern Y, Marder K et al (1998) The APOE-ε4 allele and the risk of Alzheimer disease among African-Americans, whites, and Hispanics. JAMA 279:751–755

    Article  CAS  Google Scholar 

  • Uddin MS, Kabir M (2019) Emerging signal regulating potential of genistein against Alzheimer’s disease: a promising molecule of interest. Front Cell Dev Biol 7(197)

    Google Scholar 

  • Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L (2020) Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ 700:134836

    Article  CAS  Google Scholar 

  • Usenovic M, Niroomand S, Drolet R, Yao L, Gaspar R, Hatcher N et al (2015) Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci 34:14234–14250

    Article  Google Scholar 

  • Vingtdeux V, Sergeant N, Buée L (2012) Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front Physiol 3:229

    Article  CAS  Google Scholar 

  • von Strauss E, Viitanen M, De Ronchi D, Winblad B, Fratiglioni L (1999) Aging and the occurrence of dementia: findings from a population-based cohort with a large sample of nonagenarians. Arch Neurol 56:587–592

    Article  Google Scholar 

  • Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21

    Article  Google Scholar 

  • Wang JC, Kwon JM, Shah P, Morris JC, Goate A (2000) Effect of APOE genotype and promoter polymorphism on risk of Alzheimer’s disease. Neurology 55:1644–1659

    Article  CAS  Google Scholar 

  • Wang P, Joberty G, Buist A, Vanoosthuyse A, Stancu IC, Vasconcelos B, Pierrot N, Faelth-Savitski M, Kienlen-Campard P, Octave JN, Bantscheff M, Drewes G, Moechars D, Dewachter I (2017a) Tau interactome mapping based identification of Otub1 as tau deubiquitinase involved in accumulation of pathological tau forms in vitro and in vivo. Acta Neuropathol 133:731–749

    Article  CAS  Google Scholar 

  • Wang Y, Balaji V, Kaniyappan S et al (2017b) The release and trans-synaptic transmission of tau via exosomes. Mol Neurodegener 12(1):5

    Article  Google Scholar 

  • Willemse EAJ, Tijms BM, Van Berckel BNM et al (2020) Using cerebrospinal fluid amyloid-beta (1-42) in the memory clinic: concordance with PET and use of biomarker ratios across immunoassays. Alzheimers Dement 16:e045128

    Article  Google Scholar 

  • Wu J, Herman M, Liu L, Simoes S, Acker C, Figueroa H et al (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  CAS  Google Scholar 

  • Zhang H, Cao Y, Ma L, Wei Yun LH (2021) Possible mechanisms of tau spread and toxicity in Alzheimer’s disease. Front Cell Dev Biol:9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Zaafar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zaafar, D. (2023). Toxic Tau Aggregation in AD. In: Mohamed, E. (eds) Handbook of Neurodegenerative Disorders . Springer, Singapore. https://doi.org/10.1007/978-981-19-3949-5_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3949-5_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3949-5

  • Online ISBN: 978-981-19-3949-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics