Skip to main content

3D Imaging Systems for Optical Metrology

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

In recent years, new noncontact measurement devices known as 3D imaging systems have being introduced on the market. They combine one or more cameras, and most often, a controllable light source, which allows the acquisition of dense and accurate digital representations of the geometry of manufactured objects. Modern 3D imaging systems also require complex software stacks to extract useful information from the dense digital representation. Since such systems can be used to compute the deviation between as-built and as-designed objects, they tend to complement more traditional coordinate measurement machines. Due to their compactness, short acquisition time, and affordability, 3D imaging systems constitute an interesting tool for quality control operations, reverse engineering and metrology-assisted assembly, and/or manufacturing. These systems can thus act as important enabler for cyber-physical systems, which are critical to Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aidibe A, Tahan A, Nejad MK (2020) Interlaboratory empirical reproducibility study based on a GD&T benchmark. Appl Sci 10(14):4704

    Article  Google Scholar 

  • Alcacer V, Cruz-Machado V (2019) Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng Sci Technol Int J 22(3):899–919

    Google Scholar 

  • Alfaify A, Saleh M, Abdullah FM, Al-Ahmari AM (2020) Design for additive manufacturing: a systematic review. Sustainability 12(19):7936

    Article  Google Scholar 

  • ANSI Z136 Part 1-6, American National Standard for Safe Use of Lasers (2007)

    Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700

    Article  Google Scholar 

  • ASME Y14.5.1-2019, Mathematical Definition of Dimensioning and Tolerancing Principles (2020)

    Google Scholar 

  • ASTM E2544 – 10 Standard Terminology for Three-Dimensional (3D) Imaging Systems (2010)

    Google Scholar 

  • Attia M, Slama Y, Peyrodie L, Cao H, Haddad F (2018) 3D point cloud coarse registration based on convex hull refined by ICP and NDT. In: 2018 25th international conference on mechatronics and machine vision in practice (M2VIP). IEEE, pp 1–6

    Google Scholar 

  • Baribeau R, Rioux M (1991) Influence of speckle on laser range sensor development. App Opt 30(20):2873–2878

    Article  ADS  Google Scholar 

  • Besl PJ (1988) Active, optical range imaging sensors. Mach Vision Appl 1(2):127–152

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures, vol 1611. SPIE, pp 586–606

    Chapter  Google Scholar 

  • Blais F (2004) Review of 20 years of range sensor development. J Electron Imaging 13(1):231–243

    Article  ADS  Google Scholar 

  • Boisvert J, Drouin M-A, Godin G, Picard M (2020) Augmented reality, 3D measurement, and thermal imagery for computer-assisted manufacturing. In: Ehmke J, Lee BL (eds) Emerging digital micro mirror device based systems and applications XII, vol 11294. International Society for Optics and Photonics, SPIE, pp 108–115

    Google Scholar 

  • BS EN 62471:2008, British Standards Photobiological Safety of Lamps and Lamp Systems (2008)

    Google Scholar 

  • Catalucci S, Thompson A, Piano S, Branson D, Leach R (2022) Optical metrology for digital manufacturing: a review. Int J Adv Manuf Technol 120:4271–4290

    Article  Google Scholar 

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):145–155

    Article  Google Scholar 

  • Chiboub A, Arezki Y, Vissiere A, Mehdi-Souzani C, Anwer N, Alzahrani B, Bouazizi ML, Nouira H (2021) Generation of reference soft gauges for minimum zone fitting algorithms: case of aspherical and freeform surfaces. Nanomaterials 11(12)

    Google Scholar 

  • Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Scarano V, De Chiara R, Erra U (eds) Eurographics Italian chapter conference. The Eurographics Association

    Google Scholar 

  • Deschaud J-E, Goulette F (2010) A fast and accurate plane detection algorithm for large noisy point clouds using filtered normal and voxel growing. In: 3DPVT. Hal Archives-Ouvertes, Paris,

    Google Scholar 

  • Diez Y, Roure F, Llado X, Salvi J (2015) A qualitative review on 3D coarse registration methods. ACM Comput Surv 47(3)

    Google Scholar 

  • Ding J, Liu Q, Sun P (2019) A robust registration algorithm of point clouds based on adaptive distance function for surface inspection. Mea Sci Technol 30(7):075003

    Article  ADS  Google Scholar 

  • Dorsch RG, Häusler G, Herrmann JM (1994) Laser triangulation: fundamental uncertainty in distance measurement. Appl Opt 33(7):1306–1314

    Article  ADS  Google Scholar 

  • Drouin M-A, Beraldin J-A (2020) Active triangulation 3D imaging systems for industrial inspection. Springer International Publishing, Cham, pp 109–165

    Google Scholar 

  • Drouin M-A, Hamieh I (2020) Active time-of-flight 3D imaging systems for medium-range applications. Springer International Publishing, Cham, pp 167–214

    Google Scholar 

  • Drouin M-A, Seoud L (2020) Consumer-grade RGB-D cameras. Springer International Publishing, Cham, pp 215–264

    Google Scholar 

  • Drouin M-A, Blais F, Picard M, Boisvert J, Beraldin J-A (2017) Characterizing the impact of optically induced blurring of a highresolution phase-shift 3D scanner. Mach Vis Appl 28(8):903–915

    Article  Google Scholar 

  • EURAMET (2020) Traceability for computationally intensive metrology. Technical Report. Accessed 6 June 2020

    Google Scholar 

  • Forbes A (2006a) Surface fitting taking into account uncertainty structure in coordinate data. Meas Sci Technol 17(3):553

    Article  ADS  MathSciNet  Google Scholar 

  • Forbes A (2006b) Uncertainty evaluation associated with fitting geometric surfaces to coordinate data. Metrologia 43(4):S282

    Article  ADS  Google Scholar 

  • Forbes A (2018) Uncertainties associated with position, size and shape for point cloud data. J Phys Conf Ser 1065:142023

    Article  Google Scholar 

  • Forbes A, Smith IM, Hartig F, Wendt K (2015) Overview of EMRP Joint Research Project NewW06\traceability for computationally-intensive metrology, pp 164–170

    Google Scholar 

  • Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928

    Article  Google Scholar 

  • Ghorbani H, Khameneifar F (2021) Accurate registration of point clouds of damaged aeroengine blades. J Manuf Sci Eng 143(3)

    Google Scholar 

  • Giancola S, Valenti M, Sala R (2018) A survey on 3D cameras: metrological comparison of time-of-flight, structured-light and active stereoscopy technologies. Springer

    Book  Google Scholar 

  • Givi M, Cournoyer L, Reain G, Eves B (2019) Performance evaluation of a portable 3D imaging system. Precis Eng

    Google Scholar 

  • Goch G, Lubke K (2008) Tchebycheff approximation for the calculation of maximum inscribed/minimum circumscribed geometry elements and form deviations. CIRP Ann 57(1):517–520

    Article  Google Scholar 

  • Gomes de Mello JM, Trabasso LG, Cordeiro Reckevcius A, Oliveira AL, Palmeira A, Reiss P, Caraca W (2020) A novel jigless process applied to a robotic cell for aircraft structural assembly. Int J Adv Manuf Technol 109(3):1177–1187

    Article  Google Scholar 

  • Greif N, Schrepf H, Richter D (2006) Software validation in metrology: a case study for a gum-supporting software. Measurement 39(9):849–855

    Article  ADS  Google Scholar 

  • Guo J, Yang J (2019) An iterative procedure for robust circle fitting. Commun Stat Simul Comput 48(6):1872–1879

    Article  MathSciNet  MATH  Google Scholar 

  • Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press. ISBN: 0521540518

    Book  MATH  Google Scholar 

  • Hebert P (2001) A self-referenced handheld range sensor. In: Proceedings third international conference on 3-D digital imaging and modeling, pp 5–12

    Google Scholar 

  • ISO Guide 98-3, Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty in Measurement (GUM 1995) (1995)

    Google Scholar 

  • ISO Geometrical Product Specifications (GPS) – Dimensional Tolerancing|Part 1: Linear Sizes (2016)

    Google Scholar 

  • ISO 10360, Geometrical Product Specifications (GPS) – Acceptance and Reverification Tests for Coordinate Measuring Machines (2011)

    Google Scholar 

  • Jahne B, Haussecker HW, Geissler P (1999) Handbook of computer vision and applications, Sensors and imaging, vol 1. Academic

    MATH  Google Scholar 

  • Jbira I, Tahan A, Mahjoub MA, Louhichi B (2018) Evaluation of the algorithmic error of new specification tools for an ISO 14405-1: 2016 size. In: International design engineering technical conferences and computers and information in engineering conf., 51722: V01AT02A006. ASME

    Google Scholar 

  • Jbira I, Tahan A, Bonsaint S, Mahjoub MA, Louhichi B (2019) Reproducibility experimentation among computer-aided inspection software from a single point cloud. J Control Sci Eng 2019:1–10

    Article  Google Scholar 

  • Ji S, Ren Y, Ji Z, Liu X, Hong G (2017) An improved method for registration of point cloud. Optik 140:451–458

    Article  ADS  Google Scholar 

  • Joint Committee for Guides in Metrology (2008) International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM)

    Google Scholar 

  • Leach R (ed) (2011) Optical measurement of surface topography. Springer

    Google Scholar 

  • Li Y, Gu P (2005) Inspection of free-form shaped parts. Robot Comput Integr Manuf 21(4–5):421–430

    Article  Google Scholar 

  • Li X, Barhak J, Guskov I, Blake GW (2007) Automatic registration for inspection of complex shapes. Virtual Phys Prototyp 2(2):75–88

    Article  Google Scholar 

  • Liu Y-S, Ramani K (2009) Robust principal axes determination for point based shapes using least median of squares. Comput Aided Des 41(4):293–305

    Article  Google Scholar 

  • Liu R, Wang Z, Liou F (2018) Multifeature fitting and shape adaption algorithm for component repair. J Manuf Sci Eng 140(2):021003

    Article  Google Scholar 

  • MacKinnon DK, Carrier B, Beraldin J-A, Cournoyer L (2013) GD&T-based characterization of short-range non-contact 3D imaging systems. Int J Comput Vis 102(1–3):56–72

    Article  MathSciNet  Google Scholar 

  • Marriott RT, Pashevich A, Horaud R (2018) Plane-extraction from depth-data using a Gaussian mixture regression model. Pattern Recogn Lett 110:44–50

    Article  ADS  Google Scholar 

  • Mitra NJ, Gelfand N, Pottmann H, Guibas L (2004) Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing. Lecture Notes in Computer Science: Authors’ Instructions 25, pp 22–31

    Google Scholar 

  • Moroni G, Syam WP, Petro S (2014) Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology. Meas Sci Technol 25(8):085008

    Article  ADS  Google Scholar 

  • Müller B (2014) Repeatable and traceable software verification for 3D coordinate measuring machines. In: Proceedings of the 18th world multi-conference on systemic, cybernetics and informatics, Orlando, pp 15–18

    Google Scholar 

  • Muralikrishnan B, Phillips S, Sawyer D (2016) Laser trackers for large scale dimensional metrology: a review. Precis Eng 44:13–28

    Article  Google Scholar 

  • Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

  • Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Andrew D K Davison J., Kohi P, Shotton J, Hodges S, Fitzgibbon A (2011) Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE international symposium on mixed and augmented reality, pp 127–136

    Google Scholar 

  • Nguyen HL, Belton D, Helmholz P (2017) A comparative study of automatic plane fitting registration for MLS sparse point clouds with different plane segmentation methods. In: ISPRS annals of photogrammetry, remote sensing & spatial information sciences, vol 4, pp 115–122

    Google Scholar 

  • Nitzan D (1988) Three-dimensional vision structure for robot applications. IEEE Trans Pattern Anal Mach Intell 10(3):291–309

    Article  Google Scholar 

  • Nurunnabi A, Sadahiro Y, Lindenbergh R (2017) Robust cylinder fitting in three-dimensional point cloud data. Int Arch Photogramm Remote Sens Spat Inf Sci 42(1/W1):63–70

    Article  Google Scholar 

  • Nurunnabi A, Sadahiro Y, Laefer DF (2018) Robust statistical approaches for circle fitting in laser scanning three-dimensional point cloud data. Pattern Recogn 81:417–431

    Article  ADS  Google Scholar 

  • Nurunnabi A, Sadahiro Y, Lindenbergh R, Belton D (2019) Robust cylinder fitting in laser scanning point cloud data. Measurement 138:632–651

    Article  ADS  Google Scholar 

  • Remondino F, Stoppa D (eds) (2013) TOF range-imaging cameras. Springer

    Google Scholar 

  • Rhinithaa PT, Selvakumar P, Sudhakaran N, Anirudh V, Mathew J et al (2018) Comparative study of roundness evaluation algorithms for coordinate measurement and form data. Precis Eng 51:458–467

    Article  Google Scholar 

  • Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA), Shanghai, China, 9–13 May 2011

    Google Scholar 

  • Salvi J, Pages J, Batlle J (2004) Pattern codification strategies in structured light systems. Pattern Recogn 37(4):827–849

    Article  ADS  MATH  Google Scholar 

  • Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5):578–596

    Article  Google Scholar 

  • Senin N, Catalucci S, Moretti M, Leach RK (2021) Statistical point cloud model to investigate measurement uncertainty in coordinate metrology. Precis Eng 70:44–62

    Article  Google Scholar 

  • Srinivasan V, Shakarji CM, Morse EP (2012) On the enduring appeal of least squares fitting in computational coordinate metrology. J Comput Inf Sci Eng 12(1):20120301

    Article  Google Scholar 

  • Tran T-T, Cao V-T, Laurendeau D (2015) Extraction of cylinders and estimation of their parameters from point clouds. Comput Graph 46:345–357

    Article  Google Scholar 

  • Tsai RY, Lenz RK (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot Autom 5(3):345–358

    Article  Google Scholar 

  • Tubic D, Hébert P, Laurendeau D (2003) A volumetric approach for interactive 3D modeling. Comput Vis Image Underst 92:56–77

    Article  Google Scholar 

  • Tubic D, Hebert P, Laurendeau D (2004) 3D surface modeling from curves. Image Vis Comput 22:719–734

    Article  Google Scholar 

  • Uhlemann TH-J, Lehmann C, Steinhilper R (2017) The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61:335–340. The 24th CIRP conference on life cycle engineering

    Article  Google Scholar 

  • VDI 2617 Part 6.2, Accuracy of Coordinate Measuring Machines – Characteristics and Their Testing, Guideline for the Application of DIN EN ISO 10360 to Coordinate Measuring Machines with Optical Distance Sensors. Beuth Verlag Gmbh (2005)

    Google Scholar 

  • VDI 2634 Part 2 Optical 3-D Measuring Systems, Optical System Based on Area Scanning (2002)

    Google Scholar 

  • VDI 2634 Part 3 Optical 3-D Measuring Systems Optical – System Based on Area Scanning (2008)

    Google Scholar 

  • Weckenmann A, Knauer M, Killmaier T (2001) Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry. J Mater Process Technol 115(1):9–13

    Article  Google Scholar 

  • Xiuming L, Jingcai Z, Hongqi L (2013) Determination of the minimum zone circle based on the minimum circumscribed circle. Meas Sci Technol 25(1):017002

    Article  ADS  Google Scholar 

  • Yoshizawa T (2009) Handbook of optical metrology: principles and applications. CRC Press

    Book  Google Scholar 

  • Zanardi A, de Freitas MMA, Raele MP (2010) Optical coherence tomography: development and applications. In Tech

    Google Scholar 

  • Zanuttigh P, Minto L, Marin G, Dominio F, Cortelazzo G (2016) Time-of-flight and structured light depth cameras: technology and applications, vol 01. Springer

    Google Scholar 

  • Zezulka F, Marcon P, Vesely I, Sajdl O (2016) Industry 4.0 an introduction in the phenomenon. IFAC-Papers OnLine 49(25):8–12. 14th IFAC conference on programmable devices and embedded systems PDES 2016

    Google Scholar 

  • Zhao B, Chen X, Le X, Xi J, Jia Z (2021) A comprehensive performance evaluation of 3-D transformation estimation techniques in point cloud registration. IEEE Trans Instrum Meas 70:1–14

    Google Scholar 

  • Zhu L, Barhak J, Srivatsan V, Katz R (2007) Efficient registration for precision inspection of free-form surfaces. Int J Adv Manuf Technol 32(5):505–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Antoine Drouin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Drouin, MA., Tahan, A. (2022). 3D Imaging Systems for Optical Metrology. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics