Skip to main content

Quantum Redefinition of Mass

The State of the Art

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 26 Accesses

Abstract

This chapter deals with mass measurement and metrological activities from prehistoric civilizations until the present. The importance of the International Prototype of the Kilogram (IPK) and its limitations that created the need to redefine the kilogram in terms of the fundamental constant has been discussed. The redefinition of the kilogram in terms of Planck constant h is a result of the consequent efforts of the metrology community. Some of the significant events that took place in this process are highlighted in the chapter. An in-depth discussion is offered on the four-phase CCM dissemination method. Also, the traceability of mass dissemination in India before and after redefinition has been discussed. One of the benefits of the new kilogram definition is that it allows each country to establish its realization capability. The basic principle of different realization techniques adopted by different NMIs to define the kilogram, which includes the Kibble balance, Joule balance, and XRCD method, is also provided. The role of two quantum effects, viz., quantum hall effect and Josephson effect, in defining kilogram using Kibbe balance is explained. Finally, a brief discussion on the present status of different NMI across the globe working on the different primary realization techniques is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alberti, M.E.A.E.P.L. (2004) Weights in context : bronze age weighing systems of Eastern Mediterranean : chronology, typology, material and archaeological contexts : proceedings of the international colloquium, Roma, 22–24 November 2004. Istituto italiano di numismatica, Roma

    Google Scholar 

  • Bettin H, Fujii K, Nicolaus A (2019) Silicon spheres for the future realization of the kilogram and the mole. C R Phys 20(1):64–76

    ADS  Google Scholar 

  • Borys M et al (2012) Fundamentals of mass determination. Springer, Berlin

    Google Scholar 

  • Bosse H et al (2017) Contributions of precision engineering to the revision of the SI. CIRP Ann 66(2):827–850

    Google Scholar 

  • CCM (n.d.) Note-on-dissemination-after-redefinition

    Google Scholar 

  • Chao L et al (2015) A LEGO Watt balance: an apparatus to determine a mass based on the new SI. Am J Phys 83(11)

    Google Scholar 

  • Chao L et al (2019) The design and development of a tabletop Kibble balance at NIST. IEEE Trans Instrum Meas 68(6):2176–2182

    ADS  Google Scholar 

  • Chao L et al (2020) The performance of the KIBB-g1 tabletop Kibble balance at NIST. Metrologia 57(3):035014

    ADS  Google Scholar 

  • Choi I et al. (2016) Gravity measurements for the KRISS watt balance. In: 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016)

    Google Scholar 

  • Clark JW (1947) An electronic analytical balance. Rev Sci Instrum 18(12):915–918

    ADS  Google Scholar 

  • CSIR-National Physical Laboratory (n.d.). www.nplindia.org

  • Davidson S, Stock M (2021) Beginning of a new phase of the dissemination of the kilogram. Metrologia 58(3):033002

    ADS  Google Scholar 

  • Davis RS, Barat P, Stock M (2016) A brief history of the unit of mass: continuity of successive definitions of the kilogram. Metrologia 53(5):A12–A18

    ADS  Google Scholar 

  • Djebbar A (2008) Mathematics of the Maghreb (North Africa). In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 1403–1406

    Google Scholar 

  • Ehtesham B et al (2020) Journey of kilogram from physical constant to universal physical constant (h) via artefact: a brief review. Mapan

    Google Scholar 

  • Ehtesham B, John T, Singh N (2021) Limitation of the artifact-based definition of the kilogram, its redefinition and realization using Kibble balance. Mapan. https://doi.org/10.1007/s12647-021-00466-w

  • Ehtesham B et al (2022) Automation of demonstrational model of 1 g Kibble balance using LabVIEW at CSIR-NPL. Indian J Pure Appl Phys 60(1):29–37

    Google Scholar 

  • Eichenberger A et al (2011) Determination of the Planck constant with the METAS watt balance. Metrologia 48(3):133–141

    ADS  Google Scholar 

  • Eichenberger A et al (2022) First realisation of the kilogram with the METAS Kibble balance. Metrologia 59(2):025008

    ADS  Google Scholar 

  • Espel P et al. (2020) LNE Kibble balance progress report: modifications for vacuum operation. In: 2020 Conference on Precision Electromagnetic Measurements (CPEM)

    Google Scholar 

  • Fang H et al. (2016) Progress on the BIPM watt balance. In: 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016)

    Google Scholar 

  • Fang H et al (2020) The BIPM Kibble balance for realizing the kilogram definition. Metrologia 57(4):045009

    ADS  Google Scholar 

  • Fu Y (2021) Measurement Standards Laboratory of New Zealand (MSL) activity report for the 18th meeting of Consultative Committee for Mass and Related Quantities (CCM). BIPM, Paris

    Google Scholar 

  • Fung YH, Clarkson MT, Messerli F (2020) Alignment in the MSL Kibble balance. In: 2020 Conference on Precision Electromagnetic Measurements (CPEM)

    Google Scholar 

  • Gear D, Gear J (2008) Weights and measures: animal-shaped weights of Burma. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2239–2242

    Google Scholar 

  • Gillies GT, Ritter RC (1993) Torsion balances, torsion pendulums, and related devices. Rev Sci Instrum 64(2):283–309

    ADS  Google Scholar 

  • Girard G (1994) The third periodic verification of national prototypes of the kilogram (1988–1992). Metrologia 31(4):317–336

    ADS  Google Scholar 

  • Gupta SV (2010) Units of measurement, past, present and future. International system of units, 1st edn. Springer series in materials science. Springer, Berlin/Heidelberg

    Google Scholar 

  • Guzy M (2008) Weight measurement. Curr Protoc Essent Lab Tech 00(1):1.2.1–1.2.11

    Google Scholar 

  • Haci A et al (2020) A UME Kibble balance displacement measurement procedure. In: ACTA IMEKO, pp 11–16

    Google Scholar 

  • Haddad D et al (2017) Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017. Metrologia 54(5):633–641

    ADS  Google Scholar 

  • Holland L (2008) Weights and measures of the Hebrews. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2251–2254

    Google Scholar 

  • Iwata S (2008a) Weights and measures in the Indus Valley. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2254–2255

    Google Scholar 

  • Iwata S (2008b) Weights and measures in Peru. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2273–2275

    Google Scholar 

  • Jeckelmann B, Jeanneret B (2001: IOP) The quantum Hall effect as an electrical resistance standard. Rep Prog Phys 64:1603–1655

    ADS  Google Scholar 

  • Jones FE, Schoonover RM (2002) Handbook of mass measurement. CRC Press, Washington, DC

    Google Scholar 

  • Kibble BP, Hunt GJ (1979) A measurement of the gyromagnetic ratio of the proton in a strong magnetic field. Metrologia 15(1):5–30

    ADS  Google Scholar 

  • Kim D et al (2014) Design of the KRISS watt balance. Metrologia 51(2):S96–S100

    Google Scholar 

  • Kim M et al (2017) Establishment of KRISS watt balance system to have high uniformity performance. Int J Precis Eng Manuf 18(7):945–953

    Google Scholar 

  • Kim D et al (2020) Realization of the kilogram using the KRISS Kibble balance. Metrologia 57(5):055006

    ADS  Google Scholar 

  • Kumar A et al (2017) National Physical Laboratory demonstrates 1 g Kibble balance: linkage of macroscopic mass to Planck constant. Curr Sci 113(3):381–382

    Google Scholar 

  • Kuramoto N et al (2021) Realization of the new kilogram by the XRCD method using 28Si-enriched spheres. Meas Sens 18:100091

    Google Scholar 

  • Li S-S et al (2015) Progress on accurate measurement of the Planck constant: watt balance and counting atoms. Chin Phys B 24(1):010601

    ADS  Google Scholar 

  • Li Z et al (2020) The upgrade of NIM-2 joule balance since 2017. Metrologia 57(5):055007

    ADS  Google Scholar 

  • Lin S et al (2020) Towards a table-top Kibble balance for E1 mass standards in a range from 1 mg to 1 kg Planck-Balance 1 (PB1). In: 2020 Conference on Precision Electromagnetic Measurements (CPEM), pp 1–2

    Google Scholar 

  • Mametja TG, Potgieter H, Karsten AE, Buffler A (2018) NMISA’s precursor Kibble watt balance. In: Test and measurement 2018 conference and workshop, Western Cape

    Google Scholar 

  • McGrew TJ (2008) Physics in the Islamic World. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 1823–1825

    Google Scholar 

  • Newell DB et al (2018) The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia 55(1):L13–L16

    Google Scholar 

  • Niangoran-Bouah G (2008) Weights and measures in Africa: Akan gold weights. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2237–2239

    Google Scholar 

  • Rebstock U (2008) Weights and measures in Islam. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2255–2267

    Google Scholar 

  • Robinson IA (2012) Alignment of the NPL Mark II watt balance. Meas Sci Technol 23(12):124012

    ADS  Google Scholar 

  • Rothleitner C et al (2017) The Planck-Balance a self-calibrating precision balance for industrial applications

    Google Scholar 

  • Rothleitner C et al (2020) Planck-Balance 1 (PB1)@ A table-top Kibble balance for masses from 1 mg to 1 kg @ current status

    Google Scholar 

  • Schlamminger S, Haddad D (2019) The Kibble balance and the kilogram. C R Phys 20(1):55–63

    ADS  Google Scholar 

  • Shrivastava SK (2017) Measurement units of length, mass and time in India through the ages. Int J Phys Soc Sci 7(5):39–48

    Google Scholar 

  • Smith JA (2008) Physics. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 1812–1818

    Google Scholar 

  • Sonntag C, Mametja T, Karsten A (2020) A low-cost Kibble balance for Africa. In: 2020 Conference on Precision Electromagnetic Measurements (CPEM)

    Google Scholar 

  • Stock M (2012) Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram. Metrologia 50(1):R1–R16

    Google Scholar 

  • Stock M et al (2018) A comparison of future realizations of the kilogram. Metrologia 55(1):T1–T7

    Google Scholar 

  • Stock M et al (2020) Report on the CCM key comparison of kilogram realizations CCM.M-K8.2019. Metrologia 57(1A):07030–07030

    Google Scholar 

  • Sutton CM, Clarkson MT, Kissling WM (2016) The feasibility of a watt balance based on twin pressure balances. In: 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016)

    Google Scholar 

  • The British Museum (n.d.). https://www.britishmuseum.org/collection/object/E_Af1947-13-138

  • Thomas M et al (2017) A determination of the Planck constant using the LNE Kibble balance in air. Metrologia 54(4):468–480

    ADS  Google Scholar 

  • Toledo M (n.d.) Comparator balances

    Google Scholar 

  • Vasilyan S et al (2021) The progress in development of the Planck-Balance 2 (PB2): a tabletop Kibble balance for the mass calibration of E2 class weights. Tech Mess 88(12):731–756

    Google Scholar 

  • Willard RH (2008) Weights and measures in Egypt. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht, pp 2244–2251

    Google Scholar 

  • Wood BM, Solve S (2009) A review of Josephson comparison results. Metrologia 46(6):R13–R20

    ADS  Google Scholar 

  • Wood BM et al (2017) A summary of the Planck constant determinations using the NRC Kibble balance. Metrologia 54(3):399–409

    ADS  Google Scholar 

  • Yadav S, Aswal DK (2020) Redefined SI units and their implications. Mapan 35(1):1–9

    Google Scholar 

  • You Q et al (2017) Designing model and optimization of the permanent magnet for joule balance NIM-2. IEEE Trans Instrum Meas 66(6):1289–1296

    ADS  Google Scholar 

  • Zhonghua Z et al (2014) The joule balance in NIM of China. Metrologia 51(2):S25–S31

    Google Scholar 

  • Zimmerer RW (1983) Measurement of mass. Phys Teach 21(6):354–359

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ehtesham, B., John, T., Singh, H.K., Singh, N. (2022). Quantum Redefinition of Mass. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics