Skip to main content

Antimicrobial Usage in Animal Production Systems

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

Antimicrobial usage (AMU) in human and veterinary medicine is the single-most important factor for the development of antimicrobial resistance (AMR), a global public health threat. Although AMR development is a natural process, misuse or overuse of antimicrobials can speed up the process. Surveillance of AMU in animal and agricultural system is the basis for understanding and combating AMR, as nonhuman AMU leads to the development of resistant bacteria in the case of drugs used by humans. Among various indications, mastitis is one of the most common reasons for AMU in dairy animals. However, the pattern of AMU and their influencing factors varies among the countries, species, breeds, production systems, drugs, and other factors. Therefore, it is very important to understand the influencing factors for better implementation of policies to regulate AMU animal production systems. Several methods have been explored in animal production systems for the collection of AMU data. However, the lack of harmonized quantification methods is the major limiting factor encountered at present. Under the changing livestock production conditions from small holder, less intensive to highly intensive farming systems, identification of critical factors, and suitable metrics are important to make an evidence-based policy decision for regulation of antimicrobial usage. Several countries have taken measures to reduce AMU in food animal production system. The European Union has done it through regulations on veterinary medicines and medicated feed. Reduction and replacement of antimicrobials, along with redefined animal husbandry practices through preventive approaches, are important measures to reduce AMU in animal production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGPs:

Antimicrobial growth promoters

AMR:

Antimicrobial resistance

AMU:

Antimicrobial use

ATI:

Antimicrobial treatment incidence

BIS:

Bureau of Indian Standards

CAC:

Codex Alimentarius Commission

CCC:

Cow calculated courses

CDC:

Centers for Disease Control and Prevention

CDDEP:

Center for Disease Dynamics, Economics and Policy

CIPARS:

Canadian Integrated Programme for Antimicrobial Resistance Surveillance

DAHDF:

Department of Animal Husbandry, Dairying and Fisheries

DANMAP:

Danish Integrated Antimicrobial Resistance Monitoring and Research Programme

DCDvet:

Defined course dose for animals

DCGI:

Drug Controller General of India

DDDvet:

Define daily dose for animals

EFSA:

European Food Safety Authority

EMA:

European Medicines Agency

ESVAC:

European Surveillance of Veterinary Antimicrobial Consumption

EU:

European Union

FDA:

Food and Drug Administration

FINRESVET:

The Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents

FSSAI:

Food Safety and Standards Authority of India

GERMVET:

German National Antibiotic Resistance Monitoring

ICAR:

Indian Council of Agricultural Research

ICMR:

Indian Council of Medical Research

IPC:

Infection prevention control

ITAVARM:

Italian Veterinary Antimicrobial Resistance Monitoring

JVARM:

The Japanese Veterinary Antimicrobial Resistance Monitoring System

MoHFW:

Ministry of Health and Family Welfare

MRL:

Maximum residue limit

NARMS:

National Antimicrobial Resistance Monitoring System

NethMapMARAN:

Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands

NMDRD:

National Milk Drug Residue Data Base

NORMVET:

Norwegian Surveillance System for Antimicrobial Drug Resistance

NSAIDs:

Nonsteroidal anti-inflammatory drugs

OIE:

Office International des Epizooties

ONERBA:

National Observatory of the Epidemiology of Bacterial Resistance to Antibiotics

PCU:

Population corrected unit

RESAPATH:

French surveillance network for antimicrobial resistance in pathogenic bacteria of animal origin

SVARM:

Swedish Veterinary Antimicrobial Resistance Monitoring

USDA:

United States Department of Agriculture

VARSS:

Veterinary Antimicrobial Resistance and Sales Surveillance

VAV:

Spanish Veterinary Antimicrobial Resistance Surveillance Network

WHO:

World Health Organization

References

  • Aarestrup, F. M. (2015). The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), 20140085.

    Article  Google Scholar 

  • Al Zuheir, I. M. (2012). Detection of β-lactams and tetracyclines antimicrobial residues in raw dairy milk for human consumption in Palestine. Walailak Journal of Science and Technology (WJST), 9(3), 277–279.

    Google Scholar 

  • Alhaji, N. B., Aliyu, M. B., Ghali-Mohammed, I., & Odetokun, I. A. (2019). Survey on antimicrobial usage in local dairy cows in north-Central Nigeria: Drivers for misuse and public health threats. PLoS One, 14(12), 224949.

    Article  Google Scholar 

  • APVMA (Australian Pesticides and Veterinary Medicines Authority). (2014). Quantity of antimicrobial products sold for veterinary use in Australia. July 2005 to June 2010. ISSN: 2200–3894, ISBN: 978–1–922188-56-4 (electronic) (Viewed 31 March 2021). Available from: https://apvma.gov.au/

  • Battisti, A., Franco, A., & Busani, L. (2003). Italian Veterinary Antimicrobial Resistance Monitoring (ITAVARM) first report. IstitutoZooprofilatticoSperimentale Lazio e Toscana, National Reference Center for Antimicrobial Resistance, Italy. Rome, Italy, 27–31.

    Google Scholar 

  • Bhavadasan, M. K., & Grover, C. R. (2002). Microbial inhibitory substances (antibiotic residues) in cow and buffalo milk (AP-ICAR Funded project).

    Google Scholar 

  • Bondt, N., Jensen, V. F., Puister-Jansen, L. F., & van Geijlswijk, I. M. (2013). Comparing antimicrobial exposure based on sales data. Preventive Veterinary Medicine, 108(1), 10–20.

    Article  PubMed  Google Scholar 

  • Borriello, S.P., Broadfoot, F., Brown, S., Grace, K., Harris, C., Healey, K., & Reeves, H. (2015). UK veterinary antibiotic resistance and sales surveillance report (UK-VARSS). (Viewed 31 March 2021). Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/582341/1051728-v53-UK-VARSS_2015.pdf.

  • Borriello, S.P., Grace, K., Harris, C., Reeves, H., Healey, K., & Coyne, L. (2014). UK veterinary antibiotic resistance and sales surveillance report (UK-VARSS). (Viewed 31 March 2021). Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/477788/Optimisedversion_VARSS_Report_2014_Sales_Resistance_pdf.

  • Broome, C., Powell, B., & Limsowtin, Y. (2002). Starter cultures: Specific properties. In Encyclopedia of dairy sciences (Vol. 1, pp. 269–275). Academic Press.

    Google Scholar 

  • CDDEP (Centre for Disease Dynamics, Economics and Policy). (2016). Antibiotic use and resistance in food animals’ current policy and recommendations. 1–58. (Viewed 31 March 2021).

    Google Scholar 

  • Chauhan, A. S., George, M. S., Chatterjee, P., Lindahl, J., Grace, D., & Kakkar, M. (2018). The social biography of antibiotic use in smallholder dairy farms in India. Antimicrobial Resistance and Infection Control, 7(1), 1–13.

    Article  Google Scholar 

  • Chowdhury, S., Hassan, M. M., Alam, M., Sattar, S., Bari, M. S., Saifuddin, A. K. M., & Hoque, M. A. (2015). Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh. Veterinary World, 8(4), 467–471.

    Article  PubMed  PubMed Central  Google Scholar 

  • CIPARS (Canadian Integrated Program for Antimicrobial Resistance Surveillance). (2006). (Viewed 31 March 2021). Available from: https://www.canada.ca/en/publichealth/services/surveillance/canadian-integrated-program-antimicrobial resistance-surveillance-cipars.html.

  • Collineau, L., Rojo-Gimeno, C., Léger, A., Backhans, A., Loesken, S., Nielsen, E. O., Postma, M., Emanuelson, U., Grosse Beilage, E., Sjölund, M., & Wauters, E. (2017). Herd-specific interventions to reduce antimicrobial usage in pig production without jeopardising technical and economic performance. Preventive Veterinary Medicine, 144, 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Cuong, N. V., Padungtod, P., Thwaites, G., & Carrique-Mas, J. J. (2018). Antimicrobial usage in animal production: Areview of the literature with a focus on low-and middle-income countries. Antibiotics, 7(3), 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • DAHDF (Department of Animal Husbandry, Dairying and Fisheries). (2014). (Viewed 31 March 2021). Available from: https://www.farmer.gov.in/dadf/Advisories/Advisory_on_use_of_antibiotics_in_food_producing_animals.pdf

  • DANMAP. (2018). Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. ISSN 1600–2032. (Viewed 31 March 2021). Available from www.danmap.org

  • Directorate General of Health Services. (2013). (Viewed 31 March 2021). Available from: https://www.dfda.goa.gov.in/attachments/article/133/Sub-rule%203A%20of%20Rule%2097%20of%20Drugs%20and%20Cosmetics%20Rules%201945%20regarding%20withdrawal%20period.pdf. (Viewed on 5 April, 2021).

  • Doane, M., & Sarenbo, S. (2014). Antibiotic usage in 2013 on a dairy CAFO in NY state, USA. Infection Ecology and Epidemiology, 4(1), 24259.

    Article  Google Scholar 

  • ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), & EMA (European Medicines Agency). (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals – Joint inter agency antimicrobial consumption and resistance analysis (JIACRA) report. EFSA Journal, 15(7), 4872, 135.

    Google Scholar 

  • EFSA (European Food Safety Authority). (2015). Report for 2013 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA Supporting Publications, 12(11), 723.

    Google Scholar 

  • Ekakoro, J. E., Caldwell, M., Strand, E. B., & Okafor, C. C. (2018). Drivers of antimicrobial use practices among Tennessee dairy cattle producers. Veterinary Medicine International, 2018, 14.

    Article  Google Scholar 

  • EMA (European Medicines Agency). (2015). European surveillance of veterinary antimicrobial consumption, 2015. (EMA/387934/2015).

    Google Scholar 

  • ESVAC (European Surveillance of Veterinary Antimicrobial Consumption). (2013). Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2013: Fifth ESVAC report. European MedicineAgency.

    Google Scholar 

  • Ferreira, J. P. (2017). Why antibiotic use data in animals needs to be collected and how this can be facilitated. Frontiers in Veterinary Science, 4, 213.

    Article  Google Scholar 

  • Ferreira, J. P., & Staerk, K. (2017). Antimicrobial resistance and antimicrobial use animal monitoring policies in Europe: Where are we? Journal of Public Health Policy, 38(2), 185–202.

    Article  PubMed  Google Scholar 

  • FINRES-VET (Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents). (2002). (Viewed 31 March 2021). Available from: https://www.ruokavirasto.fi/en/farmers/animal-husbandry/animal-medication/monitoring-of-antibiotic-resistance

  • FSSAI (Food Safety and Standards Authority of India). (2015). (Viewed 31 March 2021). Available from: https://old.fssai.gov.in/Portals/0/Pdf/Draft_Meat_Poultry_Comments.pdf

  • Gaurav, A., Gill, J. P. S., Aulakh, R. S., & Bedi, J. S. (2014). ELISA based monitoring and analysis of tetracycline residues in cattle milk in various districts of Punjab. Veterinary World, 7(1), 26–29.

    Article  CAS  Google Scholar 

  • GERMVET. (2001). The Federal Office for Consumer Protection and Food Safety. (Viewed 31 March 2021). Available from: http://www.bvl.bund.de

  • Grave, K., Greko, C., Nilsson, L., Odensvik, K., Mork, T., & Ronning, M. (1999). The usage of veterinary antibacterial drugs for mastitis in cattle in Norway and Sweden during 1990–1997. Preventive Veterinary Medicine, 42(1), 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Grover, C. R., & Bhavadasan, M. (2013). Antibiotic residues in milk: Apublic health concern. In National Conference on food safety and environmental toxins (p. 47). Centre for Science and Environment.

    Google Scholar 

  • Gussmann, M., Graesboll, K., Toft, N., Nielsen, S. S., Farre, M., Kirkeby, C., & Halasa, T. (2018). Determinants of antimicrobial treatment for udder health in Danish dairy cattle herds. Journal of Dairy Science, 101(1), 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Hall, H. C., St. John, V. S., Watson, R. S., Padmore, L. J., & Paris, S. M. (2003). Antibiotic residue surveillance at the veterinary services laboratory. The Pine, St. Micheal, Barbados. Ministry of Agriculture & Rural Development, Veterinary Services Laboratory. (Viewed 31 March 2021). Available from: http://www.agriculture.gov.bb

  • Holstege, M. M. C., de Bont-Smolenaars, A. J. G., Santman-Berends, I. M. G. A., van der Linde-Witteveen, G. M., Van Schaik, G., Velthuis, A. G. J., & Lam, T. J. G. M. (2018). Factors associated with high antimicrobial use in young calves on Dutch dairy farms: A case-control study. Journal of Dairy Science, 101(10), 9259–9265.

    Article  CAS  PubMed  Google Scholar 

  • Hommerich, K., Ruddat, I., Hartmann, M., Werner, N., Käsbohrer, A., & Kreienbrock, L. (2019). Monitoring antibiotic usage in German dairy and beef cattle farms-a longitudinal analysis. Frontiers in Veterinary Science, 6, 244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde, R. M., Remnant, J. G., Bradley, A. J., Breen, J. E., Hudson, C. D., Davies, P. L., Clarke, T., Critchell, Y., Hylands, M., Linton, E., & Wood, E. (2017). Quantitative analysis of antimicrobial use on British dairy farms. Veterinary Record, 181(25), 683–691.

    Article  PubMed  Google Scholar 

  • Jonas, O. B., Irwin, A., Berthe, F. C. J., Le G., Francois, G., & Marquez, P. V. (2017). Drug-resistant infections: A threat to our economic future (Vol. 2): Final report (English). HNP/agriculture global antimicrobial resistance initiative. World Bank Group.

    Google Scholar 

  • Jones, P. J., Marier, E. A., Tranter, R. B., Wu, G., Watson, E., & Teale, C. J. (2015). Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Preventive Veterinary Medicine, 121(1–2), 30–40.

    Article  CAS  PubMed  Google Scholar 

  • JVARM (Japanese Veterinary Antimicrobial Resistance Monitoring programme). (1999). (Viewed 31 March 2021). Available from: http://www.maff.go.jp/nval/tyosa_kenkyu/taiseiki/monitor/e_index.html.

  • Katholm, J. (2014). Info about Denmark. Study on reducing antibiotic usage in dairy sector. In T. van Werven, H. Hage, M. Bokma, R. Bergevoet, J. Bakker, & A. Kuipers (Eds.), Agro Management Tools, 2012, Publ. No. 45. More recent info updated by personal communication Feb.-May 2014 (in Dutch). Agro management tools (pp 14–15).

    Google Scholar 

  • Kavitha. (2021). Evaluation of bioactive feed additive for their effect on production performance and health in broilers. Ph.D. Thesis Submitted to the Tamil Nadu Veterinary and Animal Sciences University.

    Google Scholar 

  • Kelkar, P. S., & Li, J. T. C. (2001). Cephalosporin allergy. New England Journal of Medicine, 345(11), 804–809.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Cho, B. H., Lim, C. M., Kim, D. G., Yune, S. Y., Shin, J. Y., Bong, Y. H., Kang, J., Kim, M. A., & Son, S. W. (2013). Chemical residues and contaminants in foods of animal origin in Korea during the past decade. Journal of Agricultural and Food Chemistry, 61(10), 2293–2298.

    Article  CAS  PubMed  Google Scholar 

  • Kromker, V., & Leimbach, S. (2017). Mastitis treatment-reduction in antibiotic usage in dairy cows. Reproduction in Domestic Animals, 52, 21–29.

    Article  PubMed  Google Scholar 

  • Kuipers, A., Koops, W. J., & Wemmenhove, H. (2016). Antibiotic use in dairy herds in The Netherlands from 2005 to 2012. Journal of Dairy Science, 99(2), 1632–1648.

    Article  CAS  PubMed  Google Scholar 

  • Mangsi, A. S., Khaskheli, M., Soomro, A. H., & Shah, M. G. (2014). Detection of antimicrobial drug residues in milk marketed at different areas of Sindh province. IOSR Journal of Agriculture and Veterinary Science, 7, 65–69.

    Article  Google Scholar 

  • Manimaran, A., Layek, S. S., Kumaresan, A., Prasad, S., Sreela, L., Boopathi, V., Kumar, K., & Venkatasubramanian, V. (2014). Estimation of antimicrobial drug usage for treatment of clinical mastitis cases in organized dairy farm. Indian Journal of Veterinary and Animal Sciences Research, 43(2), 140–150.

    Google Scholar 

  • Masterton, R. (2008). The importance and future of antimicrobial surveillance studies. Clinical Infectious Diseases, 47(Supplement_1), 21–31.

    Article  Google Scholar 

  • McDougall, S. (2012). Info about New Zealand. Study on reducing antibiotic usage in dairy sector. In T. van Werven, H. Hage, M. Bokma, R. Bergevoet, J. Bakker, & A. Kuipers (Eds.), Agro management tools, Publ. No. 45. Agro management tools (in Dutch). (pp. 16–17).

    Google Scholar 

  • McDougall, S., Compton, C. W. R., & Botha, N. (2017). Factors influencing antimicrobial prescribing by veterinarians and usage by dairy farmers in New Zealand. New Zealand Veterinary Journal, 65(2), 84–92.

    Article  CAS  PubMed  Google Scholar 

  • McEwen, S. A., Meek, A. H., & Black, W. D. (1991). A dairy farm survey of antibiotic treatment practices, residue control methods and associations with inhibitors in milk. Journal of Food Protection, 54(6), 454–459.

    Article  PubMed  Google Scholar 

  • Mellenburger, R. W. (1998). Milk antibiotic violations: 1996 and 1997 (mid-march). Michigan Dairy Review, 3(1), 11–14.

    Google Scholar 

  • Merle, R., Hajek, P., Kasbohrer, A., Hegger-Gravenhorst, C., Mollenhauer, Y., Robanus, M., Ungemach, F. R., & Kreienbrock, L. (2012). Monitoring of antibiotic consumption in livestock: A German feasibility study. Preventive Veterinary Medicine, 104(1–2), 34–43.

    Article  PubMed  Google Scholar 

  • Mills, H. L., Turner, A., Morgans, L., Massey, J., Schubert, H., Rees, G., Barrett, D., Dowsey, A., & Reyher, K. K. (2018). Evaluation of metrics for benchmarking antimicrobial use in the UK dairy industry. Veterinary Record, 182(13), 379.

    Article  PubMed  Google Scholar 

  • Mutua, F., Sharma, G., Grace, D., Bandyopadhyay, S., & Shome, B. (2020). A review of animal health and drug use practices in India and their possible link to antimicrobial resistance. Antimicroial Resistenceand Infection Control, 9, 103.

    Article  Google Scholar 

  • NAP-AMR (National Action Plan on Antimicrobial Resistance). (2017). (Viewed 31 March 2021). Available from: http://www.searo.who.int/india/topics/antimicrobial_resistance/nap_amr.pdf.

  • NARMS (National Antimicrobial Resistance Monitoring System). (1996). (Viewed 31 March 2021). Available from: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/national-antimicrobial-resistance-monitoring-system

  • National Policy for Containment of Antimicrobial Resistance India. (2011). Available from https://main.mohfw.gov.in/sites/default/files/3203490350abpolicy%20%281%29.pdf (Viewed 31 March 2021).

  • NethMap/MARAN. (2019). Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands, MARAN (Monitoring of antimicrobial resistance and antibiotic usage in the animals in Netherlands in 2018. Available from https://www.rivm.nl/documenten/nethmap-2019. (Viewed 31 March 2021).

  • NORM-VET. (2000). Monitoring programme for antimicrobial resistance in the veterinary and food production sectors. (Viewed 31 March 2021). Available from: https://www.vetinst.no/en/surveillance-programmes/norm-norm-vet-report

  • NPCAR (National Programme on Containment of Antimicrobial Resistance). (2012). (Viewed 31 March 2021). Available from: https://www.nhp.gov.in/national-programme-on-containment-of-anti-microbial-resistance-(amr)_pg

  • Nyman, A. K., Ekman, T., Emanuelson, U., Gustafsson, A. H., Holtenius, K., Waller, K. P., & Sandgren, C. H. (2007). Risk factors associated with the incidence of veterinary-treated clinical mastitis in Swedish dairy herds with a high milk yield and a low prevalence of subclinical mastitis. Preventive Veterinary Medicine, 78(2), 142–160.

    Article  PubMed  Google Scholar 

  • OIE (Office International des Epizooties). (2001). OIE guidelines. 2nd OIE International Conference on Antimicrobial Resistance. Use of antimicrobials and protection of public health. (Viewed 31 March 2021). Available from: http://www.anmv.afssa.fr/oiecc/conference/guidelines.htm

  • OIE (Office International des Epizooties). (2017). OIE annual report on antimicrobial agents intended for use in animals. (Viewed 31 March 2021). Available from: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/Annual_Report_AMR_2.pdf

  • Packham, W., Broome, M. C., Limsowtin, G. K. Y., & Roginski, H. (2001). Limitations of standard antibiotic screening assays when applied to milk for cheesemaking. Australian Journal of Dairy Technology, 56(1), 15.

    CAS  Google Scholar 

  • Patil, G. R., Kumar, N., & Ram, J. (2003). WHO assisted project on quality survey of milk and milk products in NDRI.

    Google Scholar 

  • Paturkar, A. M., Waskar, V. S., Mokal, K. V., & Zende, R. Z. (2005). Antimicrobial drug residues in meat and their public health significance – A review. The Indian Journal of Animal Sciences, 75(9), 1103–1111.

    CAS  Google Scholar 

  • Pol, M., & Ruegg, P. L. (2007). Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. Journal of Dairy Science, 90(1), 249–261.

    Article  CAS  PubMed  Google Scholar 

  • Porrero, M. C., Garcia, M., Teshager, T., Cubillo, I., Rivero, E., Rigaut, D., Moreno, M. A., & Dominguez, L. (2006). Veterinary monitoring of antimicrobial resistance in Spain, VAV 2005, 12threport, Ed. 1. C.E.R.S.A.

    Google Scholar 

  • Postma, M., Sjolund, M., Collineau, L., Losken, S., Stark, K. D., & Dewulf, J. (2015). Assigning defined daily doses animal: A European multi-country experience for antimicrobial products authorized for usage in pigs. Journal of Antimicrobial Chemotherapy, 70(1), 294–302.

    Article  CAS  PubMed  Google Scholar 

  • Prado, C. K., Ferreira, F. D., Bando, E., & Machinski, M., Jr. (2015). Oxytetracycline, tetracycline, chlortetracycline and doxycycline in pasteurised cow’s milk commercialised in Brazil. Food Additives and Contaminants: Part B, 8(2), 81–84.

    Article  CAS  Google Scholar 

  • Raghu, H. V. (2007). Performance of lab kit for semi-quantitative detection of antibiotic residues in milk and dried products. Ph.D. Thesis Submitted to the ICAR-NDRI.

    Google Scholar 

  • Raosaheb, C. V. (2016). Surveillance of antibiotic usage in dairy animals and stability of residues in pasteurized milk. Master’s Thesis Submitted to the ICAR-NDRI.

    Google Scholar 

  • Raosaheb, C. V., Manimaran, A., Sivaram, M., & Jeyakumar, S. (2020). Antimicrobials use pattern under organized and unorganized dairy production conditions in southern India. Indian Journal of Animal Sciences, 90(3), 362–366.

    Article  Google Scholar 

  • REACT Group. (2018). Antibiotic use in food animals: India overview. (Viewed 31 March 2021). Available from: https://www.reactgroup.org/wpcontent/uploads/2018/11/Antibiotic_Use_in_Food_Animals_India_LIGHT_2018_web.pdf

  • Redding, L. E. (2014). Understanding the use of antibiotics on small dairy farms in rural Peru. Publicly Accessible Penn Dissertations. 1414.

    Google Scholar 

  • Redding, L. E., Cubas-Delgado, F., Sammel, M. D., Smith, G., Galligan, D. T., Levy, M. Z., & Hennessy, S. (2014). The use of antibiotics on small dairy farms in rural Peru. Preventive Veterinary Medicine, 113(1), 88–95.

    Article  CAS  PubMed  Google Scholar 

  • RESAPATH. (2001). The RESAPATH network monitors the antimicrobial resistance of pathogenic bacteria isolated from animals in France. (Viewed 31 March 2021). Available from: https://resapath.anses.fr/

  • Rushton, J., Ferreira, J. P., & Stärk, K. D. (2014). Antimicrobial resistance: The use of antimicrobials in the livestock sector. In OECD food, agriculture and fisheries papers, no. 68. OECD Publishing.

    Google Scholar 

  • Saini, V., McClure, J. T., Léger, D., Dufour, S., Sheldon, A. G., Scholl, D. T., & Barkema, H. W. (2012). Antimicrobial use on Canadian dairy farms. Journal of Dairy Science, 95(3), 1209–1221.

    Article  CAS  PubMed  Google Scholar 

  • Sawant, A. A., Sordillo, L. M., & Jayarao, B. M. (2005). A survey on antibiotic usage in dairy herds in Pennsylvania. Journal of Dairy Science, 88(8), 2991–2999.

    Article  CAS  PubMed  Google Scholar 

  • Schrijver, R., Stijntjes, M., Rodríguez-Bano, J., Tacconelli, E., Rajendran, N. B., & Voss, A. (2018). Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clinical Microbiology and Infection, 24(6), 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Serniene, L., Stimbirys, A., & Daunoras, G. (2013). Trends in monitoring residues of pharmacologically active group B substances in products of animal origin in Lithuania from 1999 to 2008. Food Additives and Contaminants: Part B, 6(3), 187–195.

    Article  CAS  Google Scholar 

  • Speksnijder, D. C., Mevius, D. J., Bruschke, C. J. M., & Wagenaar, J. A. (2015). Reduction of veterinary antimicrobial use in The Netherlands. The Dutch success model. Zoonoses and PublicHealth, 62, 79–87.

    Article  Google Scholar 

  • Stevens, M., Piepers, S., & De Vliegher, S. (2016a). Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. Journal of Dairy Science, 99(4), 2896–2903.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, M., Piepers, S., Supré, K., Dewulf, J., & De Vliegher, S. (2016b). Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. Journal of Dairy Science, 99(3), 2118–2130.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, R., Muchl, R., Metz-Gercek, S., Sagl, M., Allerberger, F., Hrabcik, H., & Mittermayer, H. (2007). AURES-the first Austrian report on antimicrobial resistance–perspective of the human sector. Weekly Releases (1997–2007), 12(50), 3329.

    Article  Google Scholar 

  • Sudershan, R. V., & Bhat, R. V. (1995). A survey on veterinary drug use and residues in milk in Hyderabad. Food Additives and Contaminants, 12(5), 645–650.

    Article  CAS  PubMed  Google Scholar 

  • Swedres-Svarm. (2018). Consumption of antibiotics and occurrence of resistance in Sweden. Solna/Uppsala ISSN1650–6332 (Viewed 31 March 2021). Available from: at www.folkhalsomyndigheten.se/publicerat-material/ or at www.sva.se/swedres-svarm/

  • Swiss Antibiotic Resistance Report. (2016). Federal Office of PublicHealth and FederalFoodSafety and VeterinaryOffice. Usage of antibiotics and occurrence of antibiotic resistance in bacteria from humans and animals in Switzerland. Anresischd ARCH-VET, November 2016.

    Google Scholar 

  • Tan, X., Huang, Y. J., Jiang, Y. W., & Hu, S. H. (2007). Persistence of oxytetracycline residues in milk after the intrauterine treatment of lactating cows for endometritis. Veterinary Record, 161(17), 585–587.

    Article  CAS  PubMed  Google Scholar 

  • Tan, X., Jiang, Y. W., Huang, Y. J., & Hu, S. H. (2009). Persistence of gentamicin residues in milk after the intramammary treatment of lactating cows for mastitis. Journal of Zhejiang University Science B, 10(4), 280–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenhagen, B. A., Köster, G., Wallmann, J., & Heuwieser, W. (2006). Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. Journal of Dairy Science, 89(7), 2542–2551.

    Article  CAS  PubMed  Google Scholar 

  • Unnikrishnan, V., Bhavadassan, M. K., Nath, B. S., & Ram, C. (2005). Chemical residues and contaminants in milk: A review. The Indian Journal of Animal Sciences, 75(5), 592–598.

    CAS  Google Scholar 

  • USDA (United States Department of Agriculture). (2008). APHIS (Animal and Plant HealthInspectionService) VeterinaryServices (Centre for Epidemiology and Animal Health) Informationsheet. October 2008.

    Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.

    Article  Google Scholar 

  • Walia, K., Sharma, M., Vijay, S., & Shome, B. R. (2019). Understanding policy dilemmas around antibiotic use in food animals and offering potential solutions. The Indian Journal of Medical Research, 149(2), 107–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, D. J., Sears, P. M., & Hutchinson, L. J. (1998). Dairy producer attitudes and farm practices used to reduce the likelihood of antibiotic residues in milk and dairy beef: Afive-state survey. Large Animal Practice, 19(5), 24.

    Google Scholar 

  • Zeina, K., & Fawwak, S. (2013). Quantification of antibiotic residues and determination of antimicrobial resistance profiles of microorganisms isolated from bovine milk in Lebanon. Food and Nutrition Sciences, 4(7), 1–9.

    Article  Google Scholar 

  • Zheng, N., Wang, J., Han, R., Xu, X., Zhen, Y., Qu, X., Sun, P., Li, S., & Yu, Z. (2013). Occurrence of several main antibiotic residues in raw milk in 10 provinces of China. Food Additives and Contaminants: Part B, 6(2), 84–89.

    Article  CAS  Google Scholar 

  • Zuliani, A., Lora, I., Brscic, M., Rossi, A., Piasentier, E., Gottardo, F., Contiero, B., & Bovolenta, S. (2020). Do dairy farming systems differ in antimicrobial use? Animals, 10(1), 47.

    Article  Google Scholar 

  • Zwald, A. G., Ruegg, P. L., Kaneene, J. B., Warnick, L. D., Wells, S. J., Fossler, C., & Halbert, L. W. (2004). Management practices and reported antimicrobial usage on conventional and organic dairy farms. Journal of Dairy Science, 87(1), 191–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyasamy Manimaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manimaran, A., Kumaresan, A., Sejian, V. (2023). Antimicrobial Usage in Animal Production Systems. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics