Skip to main content

Technology Diversification in Renewable Mini-Grid Portfolios

  • Living reference work entry
  • First Online:
The Handbook of Energy Policy

Abstract

More than 90% of the world population has access to electricity in 2018, but many rural areas are still lagging. Mini grids can help electrifying isolated regions and rural areas before a structural widening of national grid systems becomes viable. Capital from private investors is key to scale up the development of mini grids. However, unattractive risk-return profiles, small investment tickets, and lack of adequate financing instruments are stalling the necessary investments. Aggregating mini-grid projects could attract more private financing by making the investment ticket more palatable, and by reducing the risk and therefore the cost of capital. We explore whether technological diversification in mini-grids portfolios can improve the risk-return profiles for investors. We apply a Markowitz portfolio optimization approach and show that, given certain conditions, technological diversification can improve the risk-return profile of mini-grid portfolios, thus making the investments more attractive to potential funders. Policymaking should address the conditions that facilitate diversification allowing the enhancement of risk-adjusted investment returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adesanya, A. A., & Schelly, C. (2019). Solar PV-diesel hybrid systems for the Nigerian private sector: An impact assessment. Energy Policy, 132. https://doi.org/10.1016/j.enpol.2019.05.038

  • Agarwal, S., Bali, N., & Urpelainen, J. (2019). Rural electrification in India: Customer behaviour and demand. The Rockefeller Foundation.

    Google Scholar 

  • Aguirre, M., & Ibikunle, G. (2014). Determinants of renewable energy growth: A global sample analysis. Energy Policy, 69, 374–384.

    Google Scholar 

  • Ali, A., Li, W., Hussain, R., He, X., Williams, B. W., & Memon, A. H. (2017). Overview of current microgrid policies, incentives and barriers in the European Union, United States and China. Sustainability (Switzerland), 9(7). https://doi.org/10.3390/su9071146

  • Amrollahi, M. H., & Bathaee, S. M. T. (2017). Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Applied Energy, 202. https://doi.org/10.1016/j.apenergy.2017.05.116

  • Bento, N., Borello, M., & Gianfrate, G. (2020). Market-pull policies to promote renewable energy: A quantitative assessment of tendering implementation. Journal of Cleaner Production, 248(2020), 119209. https://doi.org/10.1016/j.jclepro.2019.119209

  • Bhattacharyya, S. C., et al. (2019). Solar PV mini-grids versus large-scale embedded PV generation: A case study of Uttar Pradesh (India). Energy policy, 128, 36–44.

    Google Scholar 

  • Blum, N. U., Sryantoro Wakeling, R., & Schmidt, T. S. (2013). Rural electrification through village grids - Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia. In. Renewable and Sustainable Energy Reviews, 22. https://doi.org/10.1016/j.rser.2013.01.049

  • Bodie, Z., & Robert, C. Merton. (1999). Finance. Published by Prentice Hall, 1999

    Google Scholar 

  • Butler, L., & Neuhoff, K. (2008). Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renew Energy, 33(8), 1854–1867.

    Google Scholar 

  • Chaurey, A., & Kandpal, T. C. (2010). A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy, 38(6), 3118–3129. https://doi.org/10.1016/J.ENPOL.2010.01.052

    Article  Google Scholar 

  • Del Rio, P., & Bleda, M. (2012). Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach. Energy Policy, 50, 272–282.

    Google Scholar 

  • Del Rio, P., & Linares, P. (2014). Back to the future? Rethinking auctions for renewable electricity support. Renew Sust Energy Rev, 35, 42–56.

    Google Scholar 

  • Elsied, M., Oukaour, A., Gualous, H., & lo Brutto, O. A. (2016). Optimal economic and environment operation of micro-grid power systems. Energy Conversion and Management, 122. https://doi.org/10.1016/j.enconman.2016.05.074

  • ESMAP. (2019). Mini grids for half a billion people: Market outlook and handbook for decision makers. ESMAP Technical Report;014/19.

    Google Scholar 

  • European Commission. (2014). Guidelines on State Aid for Environmental Protection and Energy 2014–2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52014XC0628%2801%29

  • Gan, L., Eskeland, G. S., & Kolshus, H. H. (2007). Green electricity market development: Lessons from Europe and the US. Energy Policy, 35(1), 144–155.

    Google Scholar 

  • Gershenson, D., Tilleard, M., Cusack, J., Cooper, D., Monk, A., & Kammen, D. (2015). Increasing private capital investment into energy access: The case for mini-grid pooling facilities. United Nations Environment Programme, 28(1).

    Google Scholar 

  • Grau, T. (2014). Comparison of feed-in tariffs and tenders to remunerate solar power generation. Discussion Paper 1363, DIW Berlin. https://www.diw.de/documents/publikationen/73/diw_01.c.437464.de/dp1363.pdf

  • Hannan, M. A., Faisal, M., Jern Ker, P., Begum, R. A., Dong, Z. Y., & Zhang, C. (2020). Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. In. Renewable and Sustainable Energy Reviews, 131. https://doi.org/10.1016/j.rser.2020.110022

  • Honarmand, N. (2015). Key performance indicators modeling for optimized microgrid configuration [Master of Applied Science (MASc)]. University of Ontario Institute of Technology.

    Google Scholar 

  • IEA. (2018). World Energy Outlook 2018. IEA/OECD, Paris.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Mitigation of climate change (working group III contribution to the IPCC 5th Assessment report e final draft). Intergovernmental Panel on Climate Change (IPCC).

    Google Scholar 

  • IRENA. (2016). Renewable Energy Auctions: A Guide to Design. Working Paper. IRENA.

    Google Scholar 

  • IRENA. (2018). Policies and regulations for renewable energy mini-grids.

    Google Scholar 

  • IRENA. (2021). Innovation outlook: Renewable mini-grids. In /publications/2016/Sep/innovation-outlook-renewable-mini-grids.

    Google Scholar 

  • Johnstone, N., Haščič, I., & Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environ Resour Econ, 45(1), 133–155.

    Google Scholar 

  • Kilinc-Ata, N. (2016). The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy for Sustain Dev, 31, 83–90.

    Google Scholar 

  • Longe, O. M., Rao, N., Omowole, F., Oluwalami, A. S., & Oni, O. T. (2017). A case study on off-grid microgrid for universal electricity access in the eastern cape of South Africa. International Journal of Energy Engineering, 55–63.

    Google Scholar 

  • Malhotra, A., Schmidt, T. S., Haelg, L., & Waissbein, O. (2017). Scaling up finance for off-grid renewable energy: The role of aggregation and spatial diversification in derisking investments in mini-grids for rural electrification in India. Energy Policy, 108. https://doi.org/10.1016/j.enpol.2017.06.037

  • Marques, A. C., Fuinhas, J. A., & Pires Manso, J. R. (2010). Motivations driving renewable energy in European countries: A panel data approach. Energy Policy, 38(11), 6877–6885.

    Google Scholar 

  • Muñoz, J. I., Sánchez de la Nieta, A. A., Contreras, J., & Bernal-Agustín, J. L. (2009). Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy, 37(12), 5273–5284. https://doi.org/10.1016/J.ENPOL.2009.07.050

    Article  Google Scholar 

  • Popp, D., Hascic, I., & Medhi, N. (2011). Technology and the diffusion of renewable energy. Energy Econ, 33(4), 648–662.

    Google Scholar 

  • Pradesh, G. of U. (2016). Uttar Pradesh Mini Grid Policy 2016. In Government of Uttar Pradesh (Vol. 39, Issue 5).

    Google Scholar 

  • Robert, F. C., Sisodia, G. S., & Gopalan, S. (2018). The critical role of anchor customers in rural microgrids: Impact of load factor on energy cost. 6th International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2017, 2018-January. https://doi.org/10.1109/ICCPEIC.2017.8290401.

  • Standard & Poor’s. (2007). Standard & Poor’s Project Finance Transactions Ratings Criteria: Reference Guide. Standard & Poor’s Ratings Services, McGraw Hill Financial.

    Google Scholar 

  • The Climate Group. (2013). The business case for off-grid energy in India. The Climate Group.

    Google Scholar 

  • The World Bank Group. (2016). Uttar Pradesh, indicators at a glance. https://documents.worldbank.org/pt/publication/documents-reports/documentdetail/925341468185379316/uttar-pradesh-indicators-at-a-glance

  • United Nations. (2018). SDG 7 - Affordable and clean energy. https://Unstats.Un.Org/Sdgs/Report/2020/Goal-07/

  • Venkatraman, R., & Khaitan, S. K. (2015). A survey of techniques for designing and managing microgrids. IEEE power and energy society general meeting, 2015-September. https://doi.org/10.1109/PESGM.2015.7286590.

  • Weston, P., Kalhoro, W., Lockhart, E., Reber, T., & Booth, S. (2018). Financial and operational bundling strategies for sustainable micro-grids business models. https://www.nrel.gov/docs/fy19osti/72088.pdf

  • Winkler, J., Magosch, M., & Ragwitz, M. (2018). Effectiveness and efficiency of auctions for supporting renewable electricity–What can we learn from recent experiences. Renew Energy, 119, 473–489.

    Google Scholar 

  • World Economic Forum. (2016). Global Energy Architecture Performance Index Report 2016. https://www3.weforum.org/docs/WEF_Energy_Architecture_Performance_Index_2016.pdf

  • Xie, H., Teng, X., Sun, Q., & Ma, J. (2017). Optimal sizing of energy storage systems for interconnected micro-grids. In Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017-January. https://doi.org/10.1109/IECON.2017.8216441.

  • Zhao, Y., Tang, K. K., & Wang, L. (2013). Do renewable electricity policies promote renewable electricity generation? Evidence from panel data. Energy Policy, 62, 887–897.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Gianfrate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gianfrate, G., Gueguen, E. (2022). Technology Diversification in Renewable Mini-Grid Portfolios. In: Taghizadeh-Hesary, F., Zhang, D. (eds) The Handbook of Energy Policy. Springer, Singapore. https://doi.org/10.1007/978-981-16-9680-0_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9680-0_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9680-0

  • Online ISBN: 978-981-16-9680-0

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics