Skip to main content

Occupant Emissions and Chemistry

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

Humans are a major source of indoor chemicals. Breath and sk Occupant-Related Chemical Transformations in emissions meaningfully contribute to the chemical composition of indoor air. Volatile organic compounds emitted by humans originate from endogenous sources (metabolic processes), and from exogenous sources (environmental exposure, diet, and personal care products). They can result from microbial activity and can lead to odor nuisance and decreased perceived air quality. The emitted compounds can undergo chemical transformations, such as ozone-initiated reactions, which produce a range of new compounds. The reactions of ozone with squalene and other constituents of skin oils have been shown to significantly alter the composition of indoor air and alter its OH reactivity. Dermal emissions may impact perceived air quality more than emissions via breath. The understanding of the effects of various environmental and personal factors (e.g., temperature, humidity, personal hygiene, diet, clothing, personal care products, age, sex, emotional state) on human emissions, their chemical transformations, and their consequences for indoor air quality, comfort, and health is limited. This chapter presents an overview of occupant emissions and the indoor air chemistry associated with them. Personal and environmental factors that may influence human emissions are discussed. Emerging research on the potential impacts of occupant emissions on perceived indoor air quality and human health is presented, and key research questions to advance our understanding of occupant-related indoor air chemistry are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson SE, Wells JR, Fedorowicz A, Butterworth LF, Meade BJ, Munson AE (2007) Evaluation of the contact and respiratory sensitization potential of volatile organic compounds generated by simulated indoor air chemistry. Toxicol Sci 97:355–363

    CAS  Google Scholar 

  • Anderson SE, Franko J, Jackson LG, Wells JR, Ham JE, Meade BJ (2012) Irritancy and allergic responses induced by exposure to the indoor air chemical 4-oxopentanal. Toxicol Sci 127:371–381

    CAS  Google Scholar 

  • Antal B, Kuki Á, Nagy L, Nagy T, Zsuga M, Kéki S (2016) Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS). Anal Bioanal Chem 408:5189–5198

    CAS  Google Scholar 

  • Ara K, Hama M, Akiba S, Koike K, Okiska K, Hagura T, Kamiya T, Tomita F (2006) Foot odor due to microbial metabolism and its control. Can J Microbiol 52:357–364

    CAS  Google Scholar 

  • Arata C, Heine N, Wang N, Misztal PK, Wargocki P, Bekö G, Williams J, Nazaroff WW, Wilson KR, Goldstein AH (2019) Heterogeneous ozonolysis of squalene: gas-phase products depend on water vapor concentration. Environ Sci Technol 53:14441–14448

    CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:S197–S219

    CAS  Google Scholar 

  • Barzantny H, Brune I, Tauch A (2012) Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci 34:2–11

    CAS  Google Scholar 

  • Bekö G, Wargocki P, Wang N, Li M, Weschler CJ, Morrison G, Langer S, Ernle L, Licina D, Yang S, Zannoni N, Williams J (2020) The indoor chemical human emissions and reactivity project (ICHEAR): overview of experimental methodology and preliminary results. Indoor Air 30(6):1213–1228

    Google Scholar 

  • Bernier UR, Booth MM, Yost RA (1999) Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Anal Chem 71:1–7

    CAS  Google Scholar 

  • Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72:747–756

    CAS  Google Scholar 

  • Bird S, Gower DB (1981) The validation and use of radioimmunossay for 5-alpha-androste-16-en-3-one in human axillary collections. J Steroid Biochem 14:213–219

    CAS  Google Scholar 

  • Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, Berg-Lyon D, Ackermann G, Christense GJM, Nakatsuji T, Zhang L, Borkowski AW, Meehan MJ, Dorrestain K, Gallo RL, Bandeira N, Knight R, Alexandrov T, Dorrestein PC (2015) Molecular cartography of the human skin surface in 3D. Proc Nat Acad Sci U S A 112(17):E2120–E2129

    CAS  Google Scholar 

  • Burdack-Freitag A, Mayer F, Breuer K (2011) Identification of anthropogenic odor active compounds causing bad air quality in highly occupied rooms. In: Proceedings of Indoor Air 2011, Paper ID 507, Austin, TX, USA

    Google Scholar 

  • Chan D, Haviland-Jones J (2000) Human olfactory communication of emotion. Percept Mot Skills 91:771–781

    Google Scholar 

  • Chiba K, Yoshizawa K, Makino I, Kawakami K, Onoue M (2000) Comedogenicity of squalene monohydroperoxide in the skin after topical application. J Toxicol Sci 25:77–83

    CAS  Google Scholar 

  • Clark RP, Shirley SG (1973) Identification of skin in airborne particulate matter. Nature 246:39–40

    CAS  Google Scholar 

  • Coleman BK, Destaillats H, Hodgson AT, Nazaroff WW (2008) Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmos Environ 42:642–654

    CAS  Google Scholar 

  • Curran AM, Prada PA, Furton KG (2010) The differentiation of the volatile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds. J Forensic Sci 55:50–57

    CAS  Google Scholar 

  • De Groot AC, Le Coz CJ, Lensen GJ, Flyvholm M-A, Maibach HI, Coenraads P-J (2010) Formaldehyde-releasers: relationship to formaldehyde contact allergy. Formaldehyde-releasers in clothes: durable press chemical finishes. Part 1. Contact Dermatitis 62:259–271

    Google Scholar 

  • de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM (2014) A review of the volatiles from the healthy human body. J Breath Res 8:014001

    Google Scholar 

  • Devos M, Patte F, Rouault J, Laffort P, Van Gemert LJ (1990) Standardized human olfactory thresholds. IRL Press, Oxford

    Google Scholar 

  • Dormont L, Bessiére JM, Cohuet A (2013) Human skin volatiles: a review. J Chem Ecol 39:569–578

    CAS  Google Scholar 

  • Fadeyi MO, Weschler CJ, Tham KW, Wu WY, Sultan ZM (2013) Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment. Environ Sci Technol 47:3933–3941

    CAS  Google Scholar 

  • Fanger PO (1988) Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energ Buildings 12:1–6

    Google Scholar 

  • Fenske JD, Paulson SE (1999) Human breath emissions of VOCs. J Air Waste Manag Assoc 49:594–598

    CAS  Google Scholar 

  • Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, Denz H, Hilbe W, Jamnig H, Hackls M, Dzien A, Amann A (2012) Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res 6:036008

    CAS  Google Scholar 

  • Fischer A, Ljunfström E, Langer S (2013) Ozone removal by occupants in a classroom. Atmos Environ 81:11–17

    CAS  Google Scholar 

  • Fu D, Leng CB, Kelley J, Zeng G, Zhang YH, Liu Y (2013) ATR-IR study of ozone initiated heterogeneous oxidation of squalene in an indoor environment. Environ Sci Technol 47:10611–10618

    CAS  Google Scholar 

  • Furukawa S, Sekine Y, Kimura K, Umezewa K, Asai S, Miyachi H (2017) Simultaneous and multi-point measurement of ammonia emanating from human skin surface for the estimation of whole body dermal emission rate. J Chromatogr B 1053:60–64

    CAS  Google Scholar 

  • Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G (2008) Analyses of volatile organic compounds from human skin. Br J Dermatol 159:780–791

    CAS  Google Scholar 

  • Garner CE, Smith S, de Lacy CB, White P, Spencer R, Probert CSJ, Ratcliffem NM (2007) Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J 21:1675–1688

    CAS  Google Scholar 

  • Gligorovski S, Weschler CJ (2013) The oxidative capacity of indoor atmospheres. Environ Sci Technol 47:13905–13906

    CAS  Google Scholar 

  • Havlicek J, Saxton T (2009) The effect of diet on human bodily odors, Chapter 3. In: Hasegawa K, Takahashi H (eds) New research on food habits. Nova Science Publishers. ISBN: 978-1-60456-864-6

    Google Scholar 

  • Haze S, Gozu Y, Nakamura S, Kohno Y, Sawano K, Ohta H, Yamazaki K (2001) 2-Nonenal newly found in human body odor tends to increase with aging. J Invest Dermatol 116:520–524

    CAS  Google Scholar 

  • He J, Sun X, Yang X (2019) Human respiratory system as sink for volatile organic compounds: evidence from field measurements. Indoor Air 29:968–978

    CAS  Google Scholar 

  • Inaba M, Inaba Y (1992) Human body odor: etiology, treatment and related factors. Springer

    Google Scholar 

  • James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540

    CAS  Google Scholar 

  • Jarvis J, Seed MJ, Elton R, Sawyer L, Agius R (2005) Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds. Occup Environ Med 62:243–250

    CAS  Google Scholar 

  • King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, Teschl S, Hinterhuber H, Amann A (2010) Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol 267:626–637

    CAS  Google Scholar 

  • Kruza M, Carslaw N (2019) How do breath and skin emissions impact indoor air chemistry? Indoor Air 29:369–379

    CAS  Google Scholar 

  • Kusano M, Mendez E, Furton KG (2012) Comparison of the volatile organic compounds from different biological specimens for profiling potential. J Forensic Sci 58:29–39

    Google Scholar 

  • Kuukasjarvi S, Eriksson CJP, Koskela E, Mappes T, Nissinen K, Rantala MJ (2004) Attractiveness of women’s body odors over the menstrual cycle: the role of oral contraceptives and receiver sex. Behav Ecol 15:579–584

    Google Scholar 

  • Kwak J, Preti G (2011) Volatile disease biomarkers in breath: a critique. Curr Pharm Biotechnol 12:1067–1074

    CAS  Google Scholar 

  • Lakey PSJ, Wisthaler A, Berkemeier T, Mikoviny T, Poschl U, Shiraiwa M (2017) Chemical kinetics of multiphase reactions between oxone and human skin lipids: implications for indoor air quality and health effects. Indoor Air 27:816–828

    CAS  Google Scholar 

  • Lechner M, Moser B, Niederseer D, Karlseder A, Holzknecht B, Fuchs M, Colvin S, Tilg H, Rieder J (2006) Gender and age specific differences in exhaled isoprene levels. Respir Physiol Neurobiol 154:478–483

    CAS  Google Scholar 

  • Leyden JJ, McGinley KJ, Hoelzle E, Labows JN, Kligman AM (1981) The microbiology of the human axillae and its relation to axillary odors. J Invest Dermatol 77:413–416

    CAS  Google Scholar 

  • Li M, Weschler CJ, Bekö G, Wargocki P, Lucic G, Williams J (2020) Human ammonia emissions under various indoor environmental conditions. Environ Sci Technol 54:5419–5428

    Google Scholar 

  • Licina D, Morrison G, Bekö G, Weschler CJ, Nazaroff WW (2019) Clothing-mediated exposure to chemicals and particles. Environ Sci Technol 53:5559–5575

    CAS  Google Scholar 

  • Liu S, Li R, Wild RJ, Warneke C, de Gouw JA, Brown SS, Miller SL, Luongo JC, Jimenez JL, Ziemann PJ (2016) Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air 26:925–938

    CAS  Google Scholar 

  • Liu S, Thompson SL, Stark H, Ziemann PJ, Jimenez JL (2017) Gas-phase carboxylic acids in a university classroom: abundance, variability, and sources. Environ Sci Technol 51:5454–5463

    CAS  Google Scholar 

  • Maddalena R, Mendell MJ, Eliseeva K, Chan WR, Sullivan DP, Russell M, Satish U, Fisk WJ (2015) Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making. Indoor Air 25:362–370

    CAS  Google Scholar 

  • Marshall J, Holland KT, Gribbon EM (1988) A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J Appl Bacteriol 65:61–68

    CAS  Google Scholar 

  • Meijerink J, Braks MAH, Brack AA, Adam W, Dekker T, Posthumus MA, Van Beek TA, Van Loon JJA (2000) Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J Chem Ecol 26(6):1367–1382

    CAS  Google Scholar 

  • Mochalski P, Unterkofler K, Hinterhuber H, Amann A (2014) Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO+ mode. Anal Chem 86:3915–3923

    CAS  Google Scholar 

  • Natsch A, Derrer S, Flachsmann F, Schmidt J (2006) A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem Biodivers 3:1–20

    CAS  Google Scholar 

  • Ostrovskaya A, Landa PA, Sokolinsky M, Rosalia AD, Maes D (2001) Study and identification of volatile compounds from human skin. J Cosmet Sci 53:147–148

    Google Scholar 

  • Penn DJ, Oberzaucher E, Grammer K, Fischer G, Soini HA, Wiesler D, Novotny MV, Dixon SJ, Xu Y, Brereton RG (2007) Individual and gender fingerprints in human body odour. J R Soc Interface 4:331–340

    Google Scholar 

  • Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Camara JS (2015) Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Meta 5:3–55

    Google Scholar 

  • Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN (1999) Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl 729:75–88

    CAS  Google Scholar 

  • Prada PA, Curran AM, Furton KG (2011) The evaluation of human hand odor volatiles on various textiles: a comparison between contact and noncontact sampling methods. J Forensic Sci 56:866–881

    CAS  Google Scholar 

  • Preti G, Leyden JJ (2010) Genetic influences on human body odor: from genes to the axillae. J Investig Dermatol 130:344–346

    CAS  Google Scholar 

  • Prokop-Prigge KA, Greene K, Varallo L, Wysocki CJ, Preti G (2016) The effect of ethnicity on human axillary odorant production. J Chem Ecol 42:33–39

    CAS  Google Scholar 

  • Rai AC, Guo B, Lin CH, Zhang J, Pei J, Chen Q (2013) Ozone reaction with clothing and its initiated particle generation in an environmental chamber. Atmos Environ 77:885–892

    CAS  Google Scholar 

  • Rai AC, Guo B, Lin CH, Zhang J, Pei J, Chen Q (2014) Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber. Indoor Air 24:49–58

    CAS  Google Scholar 

  • Ruzsanyi V, Mochalski P, Schmid A, Wiesenhofer H, Klieber M, Hinterhuber H, Amann A (2012) Ion mobility spectrometry for detection of skin volatiles. J Chromatogr B 911:84–92

    CAS  Google Scholar 

  • Salvador CM, Bekö G, Weschler CJ, Morrison G, Le Breton M, Hallquist M, Ekberg L, Langer S (2019) Indoor ozone/human chemistry and ventilation strategies. Indoor Air 29:913–925

    CAS  Google Scholar 

  • Sanchez JM, Sacks RD (2006) Development of a multibed sorption trap, comprehensive two dimensional gas chromatography, and time-of-flight mass spectrometry system for the analysis of volatile organic compounds in human breath. Anal Chem 78:3046–3054

    CAS  Google Scholar 

  • Sato H, Hirose T, Kimura T, Moriyama Y, Nakashima Y (2001) Analysis of malodorous volatile substances of human waste: feces and urine. J Health Sci 47(5):483–490

    CAS  Google Scholar 

  • Schwarz K, Pizzini A, Arendacka B, Zerlauth K, Filipiak W, Schmid A, Dzien A, Neuner S, Lechleitner M, Scholl-Burgi S, Miekisch W, Schubert J, Unterkofler K, Witkovsky V, Gastl G, Amann A (2009) Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study. J Breath Res 3:027003

    CAS  Google Scholar 

  • Shirasu M, Touhara K (2011) The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem 150:257–266

    CAS  Google Scholar 

  • Stönner C, Edtbauer A, Derstroff B, Bourtsoukidis E, Klüpfel T, Wicker J, Williams J (2018) Proof of concept study: testing human volatile organic compounds as tools for age classification of films. PLoS One 13(10):e0203044

    Google Scholar 

  • Strøm-Tejsen P, Weschler CJ, Wargocki P, Myskow D, Zarzycka J (2008) The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin. J Expo Sci Environ Epidemiol 18:272–281

    Google Scholar 

  • Sukul P, Schubert JK, Trefz P, Miekosch W (2018) Natural menstrual rhythm and oral contraception diversely affect exhaled breath compositions. Sci Rep 8:10838

    Google Scholar 

  • Sun X, He J, Yang X (2017) Human breath as a source of VOCs in the built environment, Part II: concentration levels, emission rates and factor analysis. Build Environ 123:437–445

    Google Scholar 

  • Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2015) Siloxanes are the most abundant volatile organic compound emitted from engineering students in a classroom. Environ Sci Technol 2:303–307

    CAS  Google Scholar 

  • Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2016) Volatile organic compound emissions from humans indoors. Environ Sci Technol 50:12686–12694

    CAS  Google Scholar 

  • Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W (1997) Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun Mass Spectrom 11:1230–1234

    CAS  Google Scholar 

  • Thiele JJ, Podda M, Packer L (1997) Tropospheric ozone: an emerging environmental stress to skin. Biol Chem 378:1299–1305

    CAS  Google Scholar 

  • Tsushima S, Wargocki P, Tanabe S (2018a) Human bioeffluents: are exhaled and dermally-emitted bioeffluents different? In: Proceedings of indoor air 2018, Paper no 200, Philadelphia

    Google Scholar 

  • Tsushima S, Wargocki P, Tanabe S (2018b) Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents. Indoor Air 28:146–163

    CAS  Google Scholar 

  • Vereb H, Dietrich AM, Alfeeli B, Agah M (2011) The possibilities will take your breath away: breath analysis for assessing environmental exposure. Environ Sci Technol 45:8167–8175

    CAS  Google Scholar 

  • Veres PR, Faber P, Drewnick F, Lelieveld J, Williams J (2013) Anthropogenic sources of VOC in a football stadium: assessing human emissions in the atmosphere. Atmos Environ 77:1052–1059

    CAS  Google Scholar 

  • Wallace LA (1987) The TEAM study: summary and analysis: volume I. EPA 600/6–87/002a. NTIS PB 88–10006, US EPA, Washington, DC

    Google Scholar 

  • Waller JM, Maibach HI (2006) Age and skin structure and function, a quantitative approach (ii): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol 12(3):145–154

    Google Scholar 

  • Wang CY, Waring MS (2014) Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene. Atmos Environ 84:222–229

    CAS  Google Scholar 

  • Wang N, Zannoni N, Ernle L, Bekö G, Wargocki P, Li M, Weschler CJ, Williams J (2021) Total OH reactivity of emissions from humans: in situ measurement and budget analysis. Environ Sci Technol 55:149–159

    CAS  Google Scholar 

  • Weber SU, Thiele JJ, Cross CE, Packer L (1999) Vitamin C, uric acid, and glutathione gradients in murine stratum corneum and their susceptibility to ozone exposure. J Invest Dermatol 113:1128–1132

    CAS  Google Scholar 

  • Weschler CJ (2016) Roles of the human occupant in indoor chemistry. Indor Air 26:6–24

    CAS  Google Scholar 

  • Weschler CJ, Wisthaler A, Cowlin S, Tamas G, Strøm-Tejsen P, Hodgson AT, Destaillats H, Herrington J, Zhang J, Nazaroff WW (2007) Ozone-initiated chemistry in an occupied simulated aircraft cabin. Environ Sci Technol 41:6177–6184

    CAS  Google Scholar 

  • Williams J, Pleil J (2016) Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups. J Breath Res 10:032001

    Google Scholar 

  • Williams J, Stönner C, Wicker J, Krauter N, Derstroff B, Bourtsoukidis E, Klüpfel T, Kramer S (2016) Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath. Sci Rep 6:25464

    CAS  Google Scholar 

  • Wisthaler A, Weschler CJ (2010) Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonylsin indoor air. Proc Natl Acad Sci U S A 107:6568–6575

    CAS  Google Scholar 

  • Wolkoff P (2013) Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health 216:371–394

    CAS  Google Scholar 

  • Wolkoff P, Larsen ST, Hammer M, Kofoed-Sorensen V, Clausen PA, Nielsen GD (2013) Human reference values for acute airway effects of five common ozone-initiated terpene reaction products in indoor air. Toxicol Lett 216:54–64

    CAS  Google Scholar 

  • Wysocki CJ, Louie J, Leyden JJ, Blank D, Gill M, Smith L, McDermott K, Preti G (2009) Cross-adaptation of a model human stress-related odour with fragrance chemicals and ethyl esters of axillary odorants: gender specific effects. Flavour Fragr J 24:209–218

    CAS  Google Scholar 

  • Yaglou CP, Riley EC, Coggins DI (1936) Ventilation requirements. ASHRAE Trans 42:133–162

    Google Scholar 

  • Yang S, Gao K, Yang X (2016) Volatile organic compounds (VOCs) formation due to interactions between ozone and skin-oiled clothing: measurements by extraction analysis-reaction method. Build Environ 103:146–154

    Google Scholar 

  • Zeng XN, Leyden JJ, Spielman AI, Preti G (1996) Analysis of characteristic human female axillary odors: qualitative comparison to males. J Chem Ecol 22:237–257

    CAS  Google Scholar 

  • Zhang XJ, Wargocki P, Lian ZW, Thyregod C (2017a) Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 27:47–64

    CAS  Google Scholar 

  • Zhang XJ, Wargocki P, Lian ZW (2017b) Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors. Indoor Air 27:65–77

    Google Scholar 

  • Zhou S, Forbes MW, Katrib Y, Abbatt JPD (2016a) Rapid oxidation of skin oil by ozone. Environ Sci Technol Lett 3(4):170–174

    CAS  Google Scholar 

  • Zhou S, Forbes MW, Abbatt JPD (2016b) Kinetics and products from heterogeneous oxidation of squalene with ozone. Environ Sci Technol 50:11688–11697

    CAS  Google Scholar 

Download references

Acknowledgments

Part of the work on this chapter was done within the activities of the INDoor AIR POLLution NETwork (INDAIRPOLLNET) supported by the European Cooperation in Science and Technology (COST). We thank Nicola Carslaw for her comments to an earlier version of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bekö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bekö, G., Wargocki, P., Duffy, E. (2022). Occupant Emissions and Chemistry. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_33

Download citation

Publish with us

Policies and ethics