Skip to main content

Indoor Surface Chemistry

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

Indoor surfaces support a wide variety of chemical transformations that can both reduce and increase the concentrations of indoor air pollutants. Building materials, furnishings, and occupants contribute to the large amount and very wide variety of exposed surfaces. Chemistry can take place directly at the interface between surface and air or in films that coat these surfaces. Important transformations include ozone reactions with surface oils like triglycerides and squalene; these lower indoor air concentrations of ozone but consequently increase the air concentrations of aldehydes, acids, and particles. Nitrogen oxides can react at surfaces to generate nitrous acid which then participates in the conversion of amines to potentially carcinogenic nitrosamines. Hydrolysis of phthalate plasticizers increases levels of odorous chemicals and acid-base chemistry controls the rate of some reactions while serving to store vast amounts of otherwise volatile molecules in surface reservoirs. To better understand and control indoor chemistry, research is now seeking a more fundamental understanding of the composition and morphology of surfaces as well as the mechanisms and rates of surface chemistry that degrade our indoor air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbass OA, Sailor DJ, Gall ET (2017) Effect of fiber material on ozone removal and carbonyl production from carpets. Atmos Environ 148:42–48. https://doi.org/10.1016/j.atmosenv.2016.10.034

    Article  CAS  Google Scholar 

  • Aoki T, Tanabe S (2007) Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction. Atmos Environ 41:3139–3150

    CAS  Google Scholar 

  • Arata C, Heine N, Wang N et al (2019) Heterogeneous ozonolysis of squalene: gas-phase products depend on water vapor concentration. Environ Sci Technol 53:14441–14448. https://doi.org/10.1021/acs.est.9b05957

    Article  CAS  Google Scholar 

  • Ault AP, Grassian VH, Carslaw N, et al (2020) Indoor surface chemistry: developing a molecular picture of reactions on indoor interfaces. Chem. https://doi.org/10.1016/j.chempr.2020.08.023

  • Avery AM, Waring MS, DeCarlo PF (2019) Human occupant contribution to secondary aerosol mass in the indoor environment. Environ Sci Process Impacts 21:1301–1312. https://doi.org/10.1039/c9em00097f

    Article  CAS  Google Scholar 

  • Bartolomei V, Sörgel M, Gligorovski S et al (2014) Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint. Environ Sci Pollut Res 21:9259–9269

    CAS  Google Scholar 

  • Beko G, Clausen G, Weschler CJ (2007) Further studies of oxidation processes on filter surfaces: evidence for oxidation products and the influence of time in service. Atmos Environ 41:5202–5212

    Google Scholar 

  • Cano-Ruiz JA, Kong D, Balas RB, Nazaroff WW (1993) Removal of reactive gases at indoor surfaces: combining mass transport and surface kinetics. Atmos Environ A 27(A):2039–2050

    Google Scholar 

  • Coleman BK, Destaillats H, Hodgson AT, Nazaroff WW (2008) Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmos Environ 42:642–654. https://doi.org/10.1016/j.atmosenv.2007.10.001

    Article  CAS  Google Scholar 

  • Collins DB, Hems RF, Zhou S et al (2018a) Evidence for gas–surface equilibrium control of indoor nitrous acid. Environ Sci Technol 52:12419–12427

    CAS  Google Scholar 

  • Collins DB, Wang C, Abbatt JPD (2018b) Selective uptake of third-hand tobacco smoke components to inorganic and organic aerosol particles. Environ Sci Technol 52:13195–13201. https://doi.org/10.1021/acs.est.8b03880

    Article  CAS  Google Scholar 

  • Corsi RL, Hubbard H, Poppendieck D, et al (2006) Chlorine dioxide as a building disinfectant: surface consumption and by- product generation. pp 115–120

    Google Scholar 

  • DeCarlo PF, Avery AM, Waring MS (2018) Thirdhand smoke uptake to aerosol particles in the indoor environment. Sci Adv 4:eaap8368. https://doi.org/10.1126/sciadv.aap8368

    Article  CAS  Google Scholar 

  • Deming BL, Ziemann PJ (2020) Quantification of alkenes on indoor surfaces and implications for chemical sources and sinks. Indoor Air. https://doi.org/10.1111/ina.12662

  • Destaillats H, Singer BC, Lee SK, Gundel LA (2006) The effect of ozone on nicotine desorption from model surfaces: evidence for heterogeneous chemistry. Environ Sci Technol 40:1799–1805

    CAS  Google Scholar 

  • Duncan SM, Tomaz S, Morrison G, et al (2019) Dynamics of residential water-soluble organic gases: insights into sources and sinks. Environ Sci Technol. https://doi.org/10.1021/acs.est.8b05852

  • Eichler CMA, Cao J, Isaacman-VanWertz G, Little JC (2019) Modeling the formation and growth of organic films on indoor surfaces. Indoor Air 29:17–29. https://doi.org/10.1111/ina.12518

    Article  CAS  Google Scholar 

  • Febo A, Perrino C (1991) Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmos Environ A Gen Top 25:1055–1061. https://doi.org/10.1016/0960-1686(91)90147-Y

    Article  Google Scholar 

  • Finewax Z, Pagonis D, Claflin MS et al (2020) Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. Indoor Air. https://doi.org/10.1111/ina.12781

  • Finlayson-Pitts BJ, Wingen LM, Sumner AL et al (2003) The heterogeneous hydrolysis if NO2 in laboratory systems and in outdoor and indoor atmospheres: an intergrated mechanism. Phys Chem Chem Phys 5:223–242

    CAS  Google Scholar 

  • Gall ET, Siegel JA, Corsi RL (2015) Modeling ozone removal to indoor materials, including the effects of porosity, pore diameter, and thickness. Environ Sci Technol 49:4398–4406. https://doi.org/10.1021/acs.est.5b00023

    Article  CAS  Google Scholar 

  • Gandolfo A, Bartolomei V, Gomez Alvarez E et al (2015) The effectiveness of indoor photocatalytic paints on NOx and HONO levels. Appl Catal B Environ 166–167:84–90

    Google Scholar 

  • Gandolfo A, Rouyer L, Wortham H, Gligorovski S (2017) The influence of wall temperature on NO2 removal and HONO levels released by indoor photocatalytic paints. Appl Catal B Environ 209:429–436. https://doi.org/10.1016/j.apcatb.2017.03.021

    Article  CAS  Google Scholar 

  • Gómez Alvarez E, Sörgel M, Gligorovski S et al (2014) Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals. Atmos Environ 95:391–399. https://doi.org/10.1016/j.atmosenv.2014.06.034

    Article  CAS  Google Scholar 

  • Grontoft T, Raychaudhuri MR (2004) Compilation of tables of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmos Environ 38:533–544

    CAS  Google Scholar 

  • Ham JE, Wells JR (2008) Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile. Indoor Air 18:394–407

    CAS  Google Scholar 

  • Ham JE, Wells JR (2011) Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles. Chemosphere 83:327–333

    CAS  Google Scholar 

  • Hodgson AT, Ming KY, Singer BC (2005) Quantifying object and material surface areas in residences. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  • Hubbard H, Poppendieck D, Corsi RL (2009) Chlorine dioxide reactions with indoor materials during building disinfection: surface uptake. Environ Sci Technol 43:1329–1335

    CAS  Google Scholar 

  • Farmer DK, Vance ME, Abbatt JPD et al (2019) Overview of HOMEChem: house observations of microbial and environmental chemistry. Environ Sci Process Impacts 21:1280–1300. https://doi.org/10.1039/C9EM00228F

    Article  CAS  Google Scholar 

  • Kwamena N-OA, Thornton JA, Abbatt JPD (2004) Kinetics of surface-bound benzo[a]pyrene and ozone on solid organic and salt aerosols. J Phys Chem A 108:11626–11634

    CAS  Google Scholar 

  • Lamble SP, Corsi RL, Morrison GC (2011) Ozone deposition velocities, reaction probabilities and product yields for green building materials. Atmos Environ 45:6965–6972

    CAS  Google Scholar 

  • Lim CY, Abbatt JP (2020) Chemical composition, spatial homogeneity, and growth of indoor surface films. Environ Sci Technol 54:14372–14379. https://doi.org/10.1021/acs.est.0c04163

    Article  CAS  Google Scholar 

  • Liu Q, Schurter LM, Muller CE et al (2001) Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg Chem 40:4436–4442. https://doi.org/10.1021/ic000919j

    Article  CAS  Google Scholar 

  • Liu QT, Chen R, McCarry BE et al (2003) Characterization of polar organic compounds in the organic film on indoor and outdoor glass windows. Environ Sci Technol 37:2340–2349

    CAS  Google Scholar 

  • Liu S, Li R, Wild RJ et al (2016) Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air 26:925–938. https://doi.org/10.1111/ina.12272

    Article  CAS  Google Scholar 

  • Manuja A, Ritchie J, Buch K et al (2019) Total surface area in indoor environments. Environ Sci Process Impacts 21:1384–1392. https://doi.org/10.1039/C9EM00157C

    Article  CAS  Google Scholar 

  • Mattila JM, Arata C, Wang C et al (2020a) Dark chemistry during bleach cleaning enhances oxidation of organics and secondary organic aerosol production indoors. Environ Sci Technol Lett 7:795–801. https://doi.org/10.1021/acs.estlett.0c00573

    Article  CAS  Google Scholar 

  • Mattila JM, Lakey PSJ, Shiraiwa M et al (2020b) Multiphase chemistry controls inorganic chlorinated and nitrogenated compounds in indoor air during bleach cleaning. Environ Sci Technol 54:1730–1739. https://doi.org/10.1021/acs.est.9b05767

    Article  CAS  Google Scholar 

  • Morrison G (2008) Interfacial chemistry in indoor environments. Environ Sci Technol 42:3494–3499

    CAS  Google Scholar 

  • Morrison G, Shakila NV, Parker K (2015) Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil. Indoor Air 25:405–414. https://doi.org/10.1111/ina.12159

    Article  CAS  Google Scholar 

  • Morrison GC, Eftekhari A, Majluf F, Krechmer JE (2020) Yields and variability of ozone reaction products from human skin. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c05262

  • Morrison GC, Nazaroff WW (2002a) The rate of ozone uptake on carpet: mathematical modeling. Atmos Environ 36:1749–1756

    CAS  Google Scholar 

  • Morrison GC, Nazaroff WW (2002b) Ozone interactions with carpet: secondary emissions of aldehydes. Environ Sci Technol 36:2185–2192

    CAS  Google Scholar 

  • Nazaroff WW, Gadgil AJ, Weschler CJ (1993) Critique of the use of deposition velocity in modeling indoor air quality. pp 81–104

    Google Scholar 

  • Nazaroff WW, Weschler CJ (2020) Indoor acids and bases. Indoor Air 30:559–644. https://doi.org/10.1111/ina.12670

    Article  CAS  Google Scholar 

  • Nicolaides N (1974) Skin lipids: their biochemical uniqueness. Science 186:19–26

    CAS  Google Scholar 

  • Nicolas M, Ramalho O, Maupetit F (2007) Reactions between ozone and building products: impact on primary and secondary emissions. Atmos Environ 41:3129–3138

    CAS  Google Scholar 

  • Nøjgaard JK (2010) Indoor measurements of the sum of the nitrate radical, NO3, and nitrogen pentoxide, N2O5 in Denmark. Chemosphere 79:898–904

    Google Scholar 

  • Ongwandee M, Bettinger SS, Morrison GC (2005) The influence of ammonia and carbon dioxide on the sorption of a basic organic pollutant to a mineral surface. Indoor Air 15:408–419

    CAS  Google Scholar 

  • Ongwandee M, Morrison GC (2008) Influence of ammonia and carbon dioxide on the sorption of a basic organic pollutant to carpet and latex-painted gypsum board. Environ Sci Technol 42:5415–5420

    CAS  Google Scholar 

  • Pagonis D, Price DJ, Algrim LB et al (2019) Time-resolved measurements of indoor chemical emissions, deposition, and reactions in a university art Museum. Environ Sci Technol 53:4794–4802. https://doi.org/10.1021/acs.est.9b00276

    Article  CAS  Google Scholar 

  • Pandrangi LS, Morrison GC (2008) Ozone interactions with human hair: ozone uptake rates and product formation. Atmos Environ 42:5079–5089

    CAS  Google Scholar 

  • Petrick L, Destaillats H, Zouev I et al (2010) Sorption, desorption, and surface oxidative fate of nicotine. Phys Chem Chem Phys 12:10356–10364

    CAS  Google Scholar 

  • Pitts J, Biermann H, Tuazon E et al (1989) Time-resolved identification and measurement of indoor air pollutants by spectroscopic techniques: gaseous nitrous acid, methanol, formaldehyde and formic acid. JAPCA 39:1344–1347

    CAS  Google Scholar 

  • Pitts JN, Sanhueza E, Atkinson R et al (1984) An investigation of the dark formation of nitrous acid in environmental chambers. Int J Chem Kinet 16:919–939. https://doi.org/10.1002/kin.550160712

    Article  CAS  Google Scholar 

  • Pitts JN Jr, Wallington TJ, Biermann HW, Winer AM (1985) Identification and measurement of nitrous acid in an indoor environment. Atmos Environ A 19:763–767

    CAS  Google Scholar 

  • Rai AC, Guo B, Lin C-H et al (2014) Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber. Indoor Air 24:49–58

    CAS  Google Scholar 

  • Rai AC, Guo B, Lin C-H et al (2013) Ozone reaction with clothing and its initiated particle generation in an environmental chamber. Atmos Environ 77:885–892

    CAS  Google Scholar 

  • Reiss R, Ryan PB, Tibbetts S, Koutrakis P (1995) Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone. J Air Waste Manag Assoc 45:811–822

    CAS  Google Scholar 

  • Salthammer T, Fuhrmann F, Uhde E (2003) Flame retardants in the indoor environment – part II: release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane. Indoor Air 13:49–52

    CAS  Google Scholar 

  • Salvador CM, Bekö G, Weschler CJ et al (2019) Indoor ozone/human chemistry and ventilation strategies. Indoor Air 29:913–925. https://doi.org/10.1111/ina.12594

    Article  CAS  Google Scholar 

  • Schwartz-Narbonne H, Jones SH, Donaldson DJ (2019) Indoor lighting releases gas phase nitrogen oxides from indoor painted surfaces. Environ Sci Technol Lett 6:92–97. https://doi.org/10.1021/acs.estlett.8b00685

    Article  CAS  Google Scholar 

  • Sheu R, Stönner C, Ditto JC et al (2020) Human transport of thirdhand tobacco smoke: a prominent source of hazardous air pollutants into indoor nonsmoking environments. Sci Adv 6:eaay4109. https://doi.org/10.1126/sciadv.aay4109

    Article  CAS  Google Scholar 

  • Shiraiwa M, Carslaw NJ, Tobias D et al (2019) Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. Environ Sci Process Impacts 21:1240–1254. https://doi.org/10.1039/C9EM00123A

    Article  CAS  Google Scholar 

  • Shu S, Morrison GC (2012) Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber. Atmos Environ 47:421–427

    CAS  Google Scholar 

  • Shu S, Morrison GC (2011) Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloried and latex paint surfaces. Environ Sci Technol. https://doi.org/10.1021/es2001194e

  • Singer BC, Coleman BK, Destaillats H et al (2006) Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos Environ 40:6696–6710

    CAS  Google Scholar 

  • Sleiman M, Gundel LA, Pankow JF et al (2010) Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smokehazards. Proc Natl Acad Sci U S A 107:6576–6581

    CAS  Google Scholar 

  • Sleiman M, Jacob P, Smith E, et al (2011) After the smoke clears: indoor chemistry of thirdhand smoke. pp 3065–3071

    Google Scholar 

  • Spicer CW, Kenny DV, Ward GF, Billick IH (1993) Transformations, lifetimes, and sources of NO2, HONO, and HNO3 in indoor environments. J Air Waste Manag Assoc 43:1479–1485

    CAS  Google Scholar 

  • Springs M, Morrison GC (2008) Reaction probability between terpenes and ozone on model indoor surfaces

    Google Scholar 

  • Stemmler K, Ndour M, Elshorbany Y et al (2007) Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmos Chem Phys 7:4237–4248. https://doi-org.libproxy.lib.unc.edu/10.5194/acp-7-4237-2007

    CAS  Google Scholar 

  • Stönner C, Edtbauer A, Williams J (2018) Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies. Indoor Air 28:164–172. https://doi.org/10.1111/ina.12405

    Article  CAS  Google Scholar 

  • Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2016) Volatile organic compound emissions from humans indoors. Environ Sci Technol 50:12686–12694. https://doi.org/10.1021/acs.est.6b04415

    Article  CAS  Google Scholar 

  • Thornberry T, Abbatt JPD (2003) Heterogeneous reaction of ozone with liquid unsaturated fatty acids: detailed kinetics and gas-phase product studies. Phys Chem Chem Phys 6:84–93

    Google Scholar 

  • Uhde E, Salthammer T (2007) Impact of reaction products from building materials and furnishings on indoor air quality-a review of recent advances in indoor chemistry. Atmos Environ 41:3111–3128

    CAS  Google Scholar 

  • Veres PR, Faber P, Drewnick F et al (2013) Anthropogenic sources of VOC in a football stadium: assessing human emissions in the atmosphere. Atmos Environ 77:1052–1059. https://doi.org/10.1016/j.atmosenv.2013.05.076

    Article  CAS  Google Scholar 

  • Wainman T, Weschler CJ, Lioy PJ, Zhang J (2001) Effects of surface type and relative humidity on the production and concentration of nitrous acid in a model indoor environment. Environ Sci Technol 35:2200–2206

    CAS  Google Scholar 

  • Wallace LA, Emmerich SJ, Howard-Reed C (2004) Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol 38:2304–2311

    CAS  Google Scholar 

  • Wallace LA, Ott WR, Weschler CJ, Lai ACK (2017) Desorption of SVOCs from heated surfaces in the form of ultrafine particles. Environ Sci Technol 51:1140–1146. https://doi.org/10.1021/acs.est.6b03248

    Article  CAS  Google Scholar 

  • Wang C, Collins DB, Arata C et al (2020) Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Sci Adv 6:eaay8973

    CAS  Google Scholar 

  • Wang C, Waring MS (2014) Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene. Atmos Environ 84:222–229

    CAS  Google Scholar 

  • Wang H, Morrison G (2010) Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends. Indoor Air 20:224–234

    CAS  Google Scholar 

  • Wang H, Morrison GC (2006) Ozone-initiated secondary emission rates of aldehydes from indoor surfaces in four homes. Environ Sci Technol 40:5263–5268

    CAS  Google Scholar 

  • Waring MS, Siegel JA (2013) Indoor secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed d -limonene. Environ Sci Technol 47:6341–6348. https://doi.org/10.1021/es400846d

    Article  CAS  Google Scholar 

  • Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10:269–288

    CAS  Google Scholar 

  • Weschler CJ, Brauer M, Koutrakis P (1992a) Indoor ozone and nitrogen dioxide: a potential pathway to the generation of nitrate radicals, dinitrogen pentaoxide, and nitric acid indoors. Environ Sci Technol 26:179–184

    CAS  Google Scholar 

  • Weschler CJ, Hodgson AT, Wooley JD (1992b) Indoor chemistry: ozone volatile organic compounds, and carpets. Environ Sci Technol 26:2371–2377

    CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2017) Growth of organic films on indoor surfaces. Indoor Air 27:1101–1112. https://doi.org/10.1111/ina.12396

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42:9018–9040

    CAS  Google Scholar 

  • Weschler CJ, Wisthaler A, Cowlin S et al (2007) Ozone-initiated chemistry in an occupied simulated aircraft cabin. Environ Sci Technol 41:6177–6184

    CAS  Google Scholar 

  • Wisthaler A, Tamas G, Wyon DP et al (2005) Products of ozone-initiated chemistry in a simulated aircraft environment. Environ Sci Technol 39:4823–4832. https://doi.org/10.1021/es047992j

    Article  CAS  Google Scholar 

  • Wisthaler A, Weschler CJ (2010) Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci U S A 107:6568–6575

    CAS  Google Scholar 

  • Wong JPS, Carslaw N, Zhao R et al (2017) Observations and impacts of bleach washing on indoor chlorine chemistry. Indoor Air 27:1082–1090. https://doi.org/10.1111/ina.12402

    Article  CAS  Google Scholar 

  • Or VW, Wade M, Patel S et al (2020) Glass surface evolution following gas adsorption and particle deposition from indoor cooking events as probed by microspectroscopic analysis. Environ Sci Process Impacts 22:1698–1709. https://doi.org/10.1039/D0EM00156B

    Article  CAS  Google Scholar 

  • Zhou S, Forbes MW, Abbatt JPD (2016a) Kinetics and products from heterogeneous oxidation of squalene with ozone. Environ Sci Technol 50:11688–11697. https://doi.org/10.1021/acs.est.6b03270

    Article  CAS  Google Scholar 

  • Zhou S, Forbes MW, Katrib Y, Abbatt JPD (2016b) Rapid oxidation of skin oil by ozone. Environ Sci Technol Lett 3:170–174. https://doi.org/10.1021/acs.estlett.6b00086

    Article  CAS  Google Scholar 

  • Zhou Z, Zhou S, Abbatt JPD (2019) Kinetics and condensed-phase products in multiphase ozonolysis of an unsaturated triglyceride. Environ Sci Technol 53:12467–12475. https://doi.org/10.1021/acs.est.9b04460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn C. Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morrison, G.C. (2022). Indoor Surface Chemistry. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_32

Download citation

Publish with us

Policies and ethics