Skip to main content

Very Volatile Organic Compounds (VVOCs)

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 1542 Accesses

Abstract

High volatility organic compounds (or very volatile organic compounds, VVOCs) are an important category of indoor air pollutants, and the most-known VVOC is formaldehyde. Formaldehyde is ubiquitous in indoor environment and mainly originates from the emissions of indoor materials and furniture. The existence of formaldehyde poses severe adverse health effect on people. This chapter introduces the formaldehyde properties and hazards, usages and pollution levels, determination methods, as well as the short-term and long-term emission models, the measurement of key emission parameters in the models, and the impact of environment factors on the key emission parameters and emission rate. This chapter attempts to provide a screen-level impression for the readers, to understand the formaldehyde, which should be helpful for the source characterization and control of formaldehyde in the indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen I, Lundquist R, Molhave L (1975) Indoor air pollution due to chipboard used as a construction material. Atmos Environ 9:1121–1127

    CAS  Google Scholar 

  • Blondeau P, Tiffonnet AL, Damian A, Amiri O, Molina JL (2003) Assessment of contaminant diffusivities in building materials from porosimetry tests. Indoor Air 13:302–310

    CAS  Google Scholar 

  • Bodalal A, Zhang JS, Plett EG (2000) A method for measuring internal diffusion and equilibrium partition coefficients of volatile organic compounds for building materials. Build Environ 35:101–110

    Google Scholar 

  • CAS Reg. No. 50-00-0. Interim acute exposure guideline levels (AEGLs) for formaldehyde. 2008

    Google Scholar 

  • Chung PR, Tzeng CT, Ke MT, Lee CY (2013) Formaldehyde gas sensors: a review. Sensors 13:4468–4484

    CAS  Google Scholar 

  • Clarisse B, Laurent AM, Seta N, Le Moullec Y, El Hasnaoui A, Momas I (2003) Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environ Res 92:245–253

    CAS  Google Scholar 

  • Cox SS, Little JC, Hodgson AT (2001a) Measuring concentrations of volatile organic compounds in vinyl flooring. J Air Waste Manag Assoc 51:1195–1201

    CAS  Google Scholar 

  • Cox SS, Zhao D, Little JC (2001b) Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring. Atmos Environ 35:3823–3830

    CAS  Google Scholar 

  • Deng QQ (2010) Modeling VOC sorption of building materials and its impact on indoor air quality. Ph.D. Thesis, Tsinghua University, Beijing, China

    Google Scholar 

  • Deng BQ, Kim NC (2004) An analytical model for VOCs emission from dry building materials. Atmos Environ 38:1173–1180

    CAS  Google Scholar 

  • Deng QQ, Yang XD, Zhang JS (2009) Study on a new correlation between diffusion coefficient and temperature in porous building materials. Atmos Environ 43:2080–2083

    CAS  Google Scholar 

  • Deng B, Liu Y, Yin H, Ning X, Lu H, Ye L, Xu Q (2012) Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection. Talanta 91:128–133

    CAS  Google Scholar 

  • Descamps MN, Bordy T, Hue J, Mariano S, Nonglaton G, Schultz E, Tan-Thi TH, Vignoud-Despond S (2012) Real-time detection of formaldehyde by a sensor. Sensors Actuat B Chem 170:104–108

    CAS  Google Scholar 

  • EN 120 (1993) Wood-based panels –determination of formaldehyde content-extraction method called perforator method. European Standard

    Google Scholar 

  • EN 717-2 (1994) Wood-based panels – determination of formaldehyde release – part 2: formaldehyde release by the gas analysis method. European Standard

    Google Scholar 

  • EN 717-3 (1996). Wood-based panels – determination of formaldehyde release – part 3: formaldehyde release by the flask method. European Standard

    Google Scholar 

  • Farajollahi Y, Chen Z, Haghighat F (2009) An experimental study forexamining the effects of environmental conditions on diffusion coefficient ofVOC in building materials. Clean-Soil Air Water 37:436–443

    Google Scholar 

  • Gilbert NL, Guay M, David Miller J, Judek S, Chan CC, Dales RE (2005) Levels and determinants of formaldehyde, acetaldehyde, and acrolein in residential indoor air in Prince Edward Island, Canada. Environ Res 99:11–17

    CAS  Google Scholar 

  • Gilbert NL, Gauvin D, Guay M, Heroux ME, Dupuis G, Legris M, Chan CC, Dietz RN, Levesque B (2006) Housing characteristics and indoor concentrations of nitrogen dioxide and formaldehyde in Quebec City, Canada. Environ Res 102:1–8

    CAS  Google Scholar 

  • Goldstein AH, Nazaroff WW, Weschler CJ, Williams J (2021) How do indoor environments affect air pollution exposure? Environ Sci Technol 55:100–108

    CAS  Google Scholar 

  • Haghighat F, Lee CS, Ghaly WS (2002) Measurement of diffusion coefficients of VOCs for building materials: review and development of a calculation procedure. Indoor Air 12:81–91

    CAS  Google Scholar 

  • He ZC, Xiong JY, Kumagaib K, Chen WH (2019) An improved mechanism-based model for predicting the long-term formaldehyde emissions from composite wood products with exposed edges and seams. Environ Int 132:105086

    CAS  Google Scholar 

  • HIS Markit (2019) Formaldehyde. Chemical Economics Handbook

    Google Scholar 

  • Hladova M, Martinka J, Rantuch P, Necas A (2019) Review of spectrophotometric methods for determination of formaldehyde. Res Papers Faculty Mater Sci Technol Slovak Univ Technol 27:105–120

    CAS  Google Scholar 

  • Hu HP, Zhang YP, Wang XK, Little JC (2007) An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. Int J Heat Mass Transf 50:2069–2077

    CAS  Google Scholar 

  • Huang HY, Haghighat F (2002) Modelling of volatile organic compounds emission from dry building materials. Build Environ 37:1127–1138

    Google Scholar 

  • Huang SD, Xiong JY, Zhang YP (2013) A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials. J Hazard Mater 261:542–549

    CAS  Google Scholar 

  • Huang SD, Xiong JY, Zhang YP (2015) Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials: theoretical correlation and validation. Environ Sci Technol 49:1537–1544

    CAS  Google Scholar 

  • Hunt DRG, Gidman MI (1982) A national field survey of house temperatures. Build Environ 17:107–124

    Google Scholar 

  • Iabal K, Mehmood N, Baber AA, Ali Z, Zeeshan M, Anjum W (2018) Production of 6600 TPY of formaldehyde from methanol using silver catalyst. Department of Chemical Engineering, Wah Engineering College, University of Wah, Islamabad

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (2006) IARC monographs on the evaluation of carcinogenic risks to humans. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropane-2-ol. World Health Organization, Lyon, vol 88, pp 39–325

    Google Scholar 

  • Khoder MI, Shakour AA, Farag SA, AbdelHameed AA (2000) Indoor and outdoor formaldehyde concentrations in homes in residential areas in Greater Cairo. J Environ Monit 2:123–126

    CAS  Google Scholar 

  • Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD (2002) Exposures to multiple air toxics in New York City. Environ Health Perspect 110:539–546

    CAS  Google Scholar 

  • Kirchner S, Badey JR, Knudsen HN, Meininghaus R, Quenard D, Sallee H, Saarinen A (1999) Sorption capacities and diffusion coefficients of indoor surface materials exposed to VOCs: Proposal of new test procedures. In: Proceedings of the 8th Inter. Conf. of Indoor Air 1999, Edinburg, pp 430–435

    Google Scholar 

  • Li F, Niu J (2005) Simultaneous estimation of VOCs diffusion and partition coefficients in building materials via inverse analysis. Build Environ 40:1366–1374

    Google Scholar 

  • Li Q, Sritharathikhun P, Motomizu S (2007) Development of novel reagent for Hantzsch reaction for the determination of formaldehyde by spectrophotometry and fluorometry. Anal Sci 23:413–417

    Google Scholar 

  • Lin CC, Yu KP, Zhao P, Lee GWM (2009) Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests. Build Environ 44:525–533

    Google Scholar 

  • Little JC, Hodgson AT, Gadgil AJ (1994) Modeling emissions of volatile organic compounds from new carpets. Atmos Environ 28:227–234

    CAS  Google Scholar 

  • Liu XY, Mason MA, Guo ZS, Krebs KA, Roache NF (2015) Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber. Atmos Environ 122:561–568

    CAS  Google Scholar 

  • McLaren C, Null J, Quinn J (2005) Heat stress from enclosed vehicles: moderate ambient temperatures cause significant temperature rise in enclosed vehicles. Pediatrics 116:109–112

    Google Scholar 

  • Meininghaus R, Gunnarsen L, Knudsen HN (2000) Diffusion and sorption of volatile organic compounds in building materials-impact on indoor air quality. Environ Sci Technol 34:3101–3108

    CAS  Google Scholar 

  • Miksch RR, Anthon DW, Fanning LZ, Hollowell CD, Revzan K, Glanville J (1981) Modified pararosaniline method for the determination of formaldehyde in air. Anal Chem 53:2118–2123

    CAS  Google Scholar 

  • Myers GE (1985) The effects of temperature and humidity on formaldehyde emission from UF-bonded boards: a literature critique. For Prod J 35:20–31

    CAS  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:1470–8728

    Google Scholar 

  • NICNAS (2006) National Industrial Chemicals Notification and Assessment Scheme: formaldehyde, priority existing chemical assessment report no 28. Department of Health and Ageing, Australian Government

    Google Scholar 

  • Ohura T, Amagai T, Senga Y, Fusaya M (2006) Organic air pollutants inside and outside residences in Shimizu, Japan: levels, sources and risks. Sci Total Environ 366:485–499

    CAS  Google Scholar 

  • Parthasarathy S, Maddalena RL, Russell ML, Apte MG (2011) Effect of temperature and humidity on formaldehyde emissions in temporary housing units. J Air Waste Manag Assoc 61:689–695

    CAS  Google Scholar 

  • Sakai K, Norback D, Mi Y, Shibata E, Kamijima M, Yamada T, Takeuchi Y (2004) A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environ Res 94:75–85

    CAS  Google Scholar 

  • Salthammer T (2016) Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air 26:25–38

    CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    CAS  Google Scholar 

  • Sax SN, Bennett DH, Chillrud SN, Kinney PL, Spengler JD (2004) Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. J Expo Anal Environ Epidemiol 14:S95–S109

    CAS  Google Scholar 

  • Schulte-Ladbeck R, Lindahl R, Levin JO, Karst U (2001) Characterization of chemical interferences in the determination of unsaturated aldehydes using aromatic hydrazine reagents and liquid chromatography. J Environ Monit 3:306–310

    CAS  Google Scholar 

  • Serrano-Trespalacios PI, Ryan L, Spengler JD (2004) Ambient, indoor and personal exposure relationships of volatile organic compounds in Mexico City Metropolitan Area. J Expo Anal Environ Epidemiol 14:S118–S132

    CAS  Google Scholar 

  • Smith JF, Gao Z, Zhang JS, Guo B (2009) A new experimental method for the determination of emittable initial VOC concentrations in building materials and sorption isotherms for IVOCs. Clean-Soil Air Water 37:454–458

    CAS  Google Scholar 

  • Tobe M, Kaneko KT, Uchida Y (1985) Studies of the inhalation toxicity of formaldehyde, U.S. Environmental Protection Agency translation, TR-85-0236. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2003) Integrated risk information system

    Google Scholar 

  • Wang X, Zhang Y (2009) A new method for determining the initial mobile formaldehyde concentrations, partition coefficients, and diffusion coefficients of dry building materials. J Air Waste Manage Assoc 59:819–825

    CAS  Google Scholar 

  • Wang HM, Zheng JH, Yang T, He ZC, Zhang P, Liu XF, Zhang MX, Sun LH, Yu XF, Zhao J, Liu XY, Xu BP, Tong LP, Xiong JY (2020a) Predicting the Emission Characteristics of VOCs in A Simulated Vehicle Cabin Environment based on Small-scale Chamber Tests: Parameter Determination and Validation. Environ Int 142: 105817

    Google Scholar 

  • Wang YZ, Yang T, He ZC, Sun LH, Yu XF, Zhao J, Hu YJ, Zhang SH, Xiong JY (2020b) A general regression method for accurately determining the key parameters of VOC emissions from building materials/furniture in a ventilated chamber. Atmos Environ 231:117527

    Google Scholar 

  • WHO (1987) Air quality guidelines for Europe. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2002) Formaldehyde: concise international chemical assessment document (40). World Health Organization

    Google Scholar 

  • Xiong JY, Zhang YP (2010) Impact of temperature on the initial emittable concentration of formaldehyde inbuilding materials: experimental observation. Indoor Air 20:523–529

    Google Scholar 

  • Xiong JY, Yao Y, Zhang YP (2011a) C-history method: rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials. Environ Sci Technol 45:3584–3590

    CAS  Google Scholar 

  • Xiong J, Yan W, Zhang Y (2011b) Variable volume loading method: a convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials. Environ Sci Technol 45:10111–10116

    CAS  Google Scholar 

  • Xiong JY, Zhang PP, Huang SD, Zhang YP (2016) Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: correlation development and exposure assessment. Environ Res 151:734–741

    CAS  Google Scholar 

  • Xu Y, Zhang Y (2003) An improved mass transfer based model for analyzing VOC emissions from building materials. Atmos Environ 37:2497–2505

    CAS  Google Scholar 

  • Xu J, Zhang JS (2011) An experimental study of relative humidity effect on VOCs’ effective diffusion coefficient and partition coefficient in a porous medium. Build Environ 46:1785–1796

    Google Scholar 

  • Xu J, Zhang J, Grunewald J, Zhao J, Plagge R, Ouali A, Allard F (2009) A study on the similarities between water vapor and VOC diffusion in porous media by a dual chamber method. CLEAN–Soil Air Water 37:444–453

    CAS  Google Scholar 

  • Xu J, Zhang JS, Liu X, Gao Z (2012) Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity. J Air Waste Manag Assoc 62(6):671–679

    CAS  Google Scholar 

  • Yang X, Chen Q, Zhang J, Magee R, Zeng J, Shaw C (2001) Numerical simulation of VOC emissions from dry materials. Build Environ 36:1099–1107

    Google Scholar 

  • Yao XY, Wang W, Chen YL, Zhang WL, Song Y, Liu SL (2005) Seasonal change of formaldehyde concentration in the air of newly decorated houses in some cities of China. J Environ Health 22:353–355

    CAS  Google Scholar 

  • Ye W, Little JC, Won D, Zhang X (2014) Screening-level estimates of indoor exposure to volatile organic compounds emitted from building materials. Build Environ 75:58–66

    Google Scholar 

  • Zhang YP, Luo XX, Wang XK, Qian K, Zhao RY (2007) Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos Environ 41:3203–3216

    CAS  Google Scholar 

  • Zhang L, Steinmaus C, Eastmond DA, Xin XK,Smith MT (2009) Formaldehyde exposure and leukemia: a new meta-analysis andpotential mechanisms. Mutat Res 681:150–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyin Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, H., Xiong, J. (2022). Very Volatile Organic Compounds (VVOCs). In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_3

Download citation

Publish with us

Policies and ethics