Skip to main content

Passive Samplers for Indoor Gaseous Pollutants

  • Reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 1519 Accesses

Abstract

A passive sampler is a device which is capable of preconcentrating an analyte without the help of a pump. Due to its advantages of simple operation, easy portability, and no external power, passive sampling is a promising method for multi-point sampling, remote-area sampling, long-term sampling, and personal sampling compared to active sampling. Over the past decades, numerous passive samplers have been developed and successfully applied for monitoring concentrations of indoor gaseous pollutants, especially volatile organic compounds (VOCs). This chapter provides an overview of the evolution of passive samplers and passive sampling theories since 1970s, and introduces an inverse-problem-based method for the optimal design of passive samplers with the goal of minimal sampling errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62(19):2145–2148

    CAS  Google Scholar 

  • Baldwin PEJ, Maynard AD (1998) A survey of wind speeds in indoor workplaces. Ann Occup Hyg 42(5):303–313

    CAS  Google Scholar 

  • Ballach J, Greuter B, Schultz E, Jaeschke W (1999) Variations of uptake rates in benzene diffusive sampling as a function of ambient conditions. Sci Total Environ 244:203–217

    Google Scholar 

  • Bao Z, Ma P, Tong J, Wang C (2000) Research on the velocity characteristic of human walking. Lab Res Explor 19(6):39–42

    Google Scholar 

  • Bartkow ME, Booij K, Kennedy KE, Muller JF, Hawker DW (2005) Passive air sampling theory for semivolatile organic compounds. Chemosphere 60(2):170–176

    CAS  Google Scholar 

  • Batterman S, Metts T, Kalliokoski P (2002) Diffusive uptake in passive and active adsorbent sampling using thermal desorption tubes. J Environ Monit 4(6):870–878

    CAS  Google Scholar 

  • Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons, New York.

    Google Scholar 

  • Bertoni G, Tappa R, Allegrini I (2000) Assessment of a new passive device for the monitoring of benzene and other volatile aromatic compounds in the atmosphere. Ann Chim-Rome 90(3–4):249–263

    CAS  Google Scholar 

  • Bertoni G, Tappa R, Cecinato A (2001) Environmental monitoring of semi volatile polyciclic aromatic hydrocarbons by means of diffusive sampling devices and GC-MS analysis. Chromatographia 53:S312–S316

    CAS  Google Scholar 

  • Bertoni G, Ciuchini C, Tappa R (2004) Long-term diffusive samplers for the indoor air quality evaluation. Ann Chim-Rome 94(9–10):637–646

    CAS  Google Scholar 

  • Blondeau P, Tiffonnet A, Damian A, Amiri O, Molina J (2003) Assessment of contaminant diffusivities in building materials from porosimetry tests. Indoor Air 13(3):310–318

    CAS  Google Scholar 

  • Bohlin P, Audy O, Škrdlíková L, Kukučka P, Přibylová P, Prokeš R, Vojta Š, Klánová J (2014) Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks. Environ Sci Process Impacts 16(3):433–444

    CAS  Google Scholar 

  • Brown R, Charlton J, Saunders K (1981) The development of an improved diffusive sampler. Am Indust Hygiene Assoc J 42(12):865–869

    CAS  Google Scholar 

  • Cao J, Du Z, Mo J, Li X, Xu Q, Zhang Y (2016a) Inverse problem optimization method to design passive samplers for volatile organic compounds: principle and application. Environ Sci Technol 50(24):13477–13485

    CAS  Google Scholar 

  • Cao J, Xiong J, Wang L, Xu Y, Zhang Y (2016b) Transient method for determining indoor chemical concentrations based on SPME: model development and calibration. Environ Sci Technol 50(17):9452–9459

    CAS  Google Scholar 

  • Cao J, Zhang X, Little JC, Zhang Y (2017) A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor Air 27(2):417–426

    Google Scholar 

  • Cocheo V, Boaretto C, Sacco P (1996) High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption. Am Ind Hyg Assoc J 57(10):897–904

    CAS  Google Scholar 

  • Coutant RW, Lewis RG, Mulik J (1985) Passive sampling devices with reversible adsorption. Anal Chem 57(1):219–223

    Google Scholar 

  • Delcourt J, Sandino JP (2001) Performance assessment of a passive sampler in industrial atmospheres. Int Arch Occup Environ Health 74(1):49–54

    CAS  Google Scholar 

  • Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42(7):1371–1388

    CAS  Google Scholar 

  • Du Z, Mo J, Zhang Y, Li X, Xu Q (2013) Evaluation of a new passive sampler using hydrophobic zeolites as adsorbents for exposure measurement of indoor BTX. Anal Methods 5(14):3463–3472

    CAS  Google Scholar 

  • Du ZJ, Mo JH, Zhang YP, Xu QJ (2014) Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Build Environ 72:75–81

    Google Scholar 

  • Esteve-Turrillas FA, Pastor A, Yusa V, de la Guardia M (2007) Using semi-permeable membrane devices as passive samplers. Trac-Trend Anal Chem 26(7):703–712

    CAS  Google Scholar 

  • Ferm M (1979) Method for determination of atmospheric ammonia. Atmos Environ 13(10):1385–1393

    CAS  Google Scholar 

  • Gair AJ, Penkett SA (1995) The effects of wind-speed and turbulence on the performance of diffusion tube samplers. Atmos Environ 29(18):2529–2533

    CAS  Google Scholar 

  • GB/T 18883 (2002) Standards for indoor air quality (in Chinese)

    Google Scholar 

  • Gillett RW, Kreibich H, Ayers GP (2000) Measurement of indoor formaldehyde concentrations with a passive sampler. Environ Sci Technol 34(10):2051–2056

    CAS  Google Scholar 

  • Gorecki T, Namiesnik J (2002) Passive sampling. Trac-Trend Anal Chem 21(4):276–291

    CAS  Google Scholar 

  • Guild LV, Myrmel KH, Myers G, Dietrich DG (1992) Bi-level passive monitor validation: a reliable way of assuring sampling accuracy for a larger number of related chemical hazards. Appl Occup Environ Hyg 7(5):310–317

    CAS  Google Scholar 

  • Hardy JK, Dasgupta PK, Reiszner KD, West PW (1979) Personal chlorine monitor utilizing permeation sampling. Environ Sci Technol 13(9):1090–1093

    CAS  Google Scholar 

  • Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885(1–2):129–151

    CAS  Google Scholar 

  • Hearl FJ, Manning MP (1980) Transient-response of diffusion dosimeters. Am Ind Hyg Assoc J 41(11):778–783

    CAS  Google Scholar 

  • Huang C, Shan W, Xiao H (2018) Recent advances in passive air sampling of volatile organic compounds. Aerosol Air Qual Res 18(3):602–622

    Google Scholar 

  • Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36(1):85–91

    CAS  Google Scholar 

  • Kilic N, Ballantine JA (1998) Comparison of various adsorbents for long-term diffusive sampling of volatile organic compounds. Analyst 123(9):1795–1797

    CAS  Google Scholar 

  • Kim YM, Harrad S, Harrison RM (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 35(6):997–1004

    CAS  Google Scholar 

  • Kot-Wasik A, Zabiegała B, Urbanowicz M, Dominiak E, Wasik A, Namieśnik J (2007) Advances in passive sampling in environmental studies. Anal Chim Acta 602(2):141–163

    CAS  Google Scholar 

  • Koutrakis P, Wolfson JM, Bunyaviroch A, Froehlich SE, Hirano K, Mulik JD (1993) Measurement of ambient ozone using a nitrite-coated filter. Anal Chem 65(3):209–214

    CAS  Google Scholar 

  • Lee CS, Haghighat F, Ghaly WS (2005) A study on VOC source and sink behavior in porous building materials - analytical model development and assessment. Indoor Air 15(3):183–196

    Google Scholar 

  • Lewis RG, Mulik J (1985) Passive sampling devices with reversible adsorption. Anal Chem 57(1):219–223

    CAS  Google Scholar 

  • Lewis RG, Mulik JD, Coutant RW, Wooten GW, Mcmillin CR (1985) Thermally desorbable passive sampling device for volatile organic-chemicals in ambient air. Anal Chem 57(1):214–219

    CAS  Google Scholar 

  • Liard R, Zureik M, Le Moullec Y, Soussan D, Glorian M, Grimfeld A, Neukirch F (1999) Use of personal passive samplers for measurement of NO2, NO, and O-3 levels in panel studies. Environ Res 81(4):339–348

    CAS  Google Scholar 

  • Liu Q, Liu Y, Zhang M (2013) Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Build Environ 61:210–216

    Google Scholar 

  • Loh MM, Levy JI, Spengler JD, Houseman EA, Bennett DH (2007) Ranking cancer risks of organic hazardous air pollutants in the United States. Environ Health Perspect 115(8):1160–1168

    CAS  Google Scholar 

  • MDHS 80 (1995) Volatile organic compounds in air – laboratory method using diffusive solid sorbent tubes, thermal desorption and gas chromatography. Health & Safety Laboratory, Derbyshire

    Google Scholar 

  • Namieśnik J, Górecki T, Zabiegala B, Janicki W (1992) Investigations on the applicability of some commercial polyethylene films to permeation-type passive samplers for organic vapours. Indoor Air 2:115–120

    Google Scholar 

  • Namieśnik J, Zabiegała B, Kot-Wasik A, Partyka M, Wasik A (2005) Passive sampling and/or extraction techniques in environmental analysis: a review. Anal Bioanal Chem 381(2):279–301

    Google Scholar 

  • Olansandan, Amagai T, Matsushita H (1999) A passive sampler-GC/ECD method for analyzing 18 volatile organohalogen compounds in indoor and outdoor air and its application to a survey on indoor pollution in Shizuoka, Japan. Talanta 50(4):851–863

    Google Scholar 

  • Oury B, Lhuillier F, Protois J-C, Moréle Y (2006) Behavior of the GABIE, 3M 3500, PerkinElmer Tenax TA, and RADIELLO 145 diffusive samplers exposed over a long time to a low concentration of VOCs. J Occup Environ Hyg 3(10):547–557

    CAS  Google Scholar 

  • Palmes ED, Gunnison AF (1973) Personal monitoring device for gaseous contaminants. Am Ind Hyg Assoc J 34(2):78–81

    CAS  Google Scholar 

  • Partyka M, Zabiegala B, Namiesnik J, Przyjazny A (2007) Application of passive samplers in monitoring of organic constituents of air. Crit Rev Anal Chem 37(1):51–78

    CAS  Google Scholar 

  • Pennequin-Cardinal A, Plaisance H, Locoge N, Ramalho O, Kirchner S, Galloo JC (2005a) Dependence on sampling rates of Radiello((R)) diffusion sampler for BTEX measurements with the concentration level and exposure time. Talanta 65(5):1233–1240

    CAS  Google Scholar 

  • Pennequin-Cardinal A, Plaisance H, Locoge N, Ramalho O, Kirchner S, Galloo JC (2005b) Performances of the Radiello((R)) diffusive sampler for BTEX measurements: influence of environmental conditions and determination of modelled sampling rates. Atmos Environ 39(14):2535–2544

    CAS  Google Scholar 

  • Petty JD, Huckins JN, Zajicek JL (1993) Application of semipermeable-membrane devices (SPMDS) as passive air samplers. Chemosphere 27(9):1609–1624

    CAS  Google Scholar 

  • Plaisance H (2011) The effect of the wind velocity on the uptake rates of various diffusive samplers. Int J Environ an Ch 91(14):1341–1352

    CAS  Google Scholar 

  • Plaisance H, Leonardis T, Gerboles M (2008) Assessment of uncertainty of benzene measurements by Radiello diffusive sampler. Atmos Environ 42(10):2555–2568

    CAS  Google Scholar 

  • Pratt GC, Bock D, Stock TH, Morandi M, Adgate JL, Ramachandran G, Mongin SJ, Sexton K (2005) A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters. Environ Sci Technol 39(9):3261–3268

    CAS  Google Scholar 

  • Reiszner KD, West PW (1973) Collection and determination of sulfur-dioxide incorporating permeation and West-Gaeke procedure. Environ Sci Technol 7(6):526–532

    CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37(4):743–765

    CAS  Google Scholar 

  • Satterfield CN (1981) Mass transfer in heterogeneous catalysis. RE Krieger Publishing Company, Florida

    Google Scholar 

  • Seethapathy S, Gorecki T (2010) Polydimethylsiloxane-based permeation passive air sampler. Part II: effect of temperature and humidity on the calibration constants. J Chromatogr A 1217(50):7907–7913

    CAS  Google Scholar 

  • Soderstrom HS, Bergqvist PA (2004) Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds. Environ Sci Technol 38(18):4828–4834

    Google Scholar 

  • Son B, Breysse P, Yang W (2003) Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea. Environ Int 29(1):79–85

    CAS  Google Scholar 

  • Stockton SD, Underhill DW (1985) Field-evaluation of passive organic vapor samplers. Am Ind Hyg Assoc J 46(9):526–531

    CAS  Google Scholar 

  • Tolnai B, Gelencsér A, Hlavay J (2001) Theoretical approach to non-constant uptake rates for tube-type diffusive samplers. Talanta 54(4):703–713

    CAS  Google Scholar 

  • Walgraeve C, Demeestere K, Dewulf J, Van Huffel K, Van Langenhove H (2011) Uptake rate behavior of tube-type passive samplers for volatile organic compounds under controlled atmospheric conditions. Atmos Environ 45(32):5872–5879

    CAS  Google Scholar 

  • Wania F, Shunthirasingham C (2020) Passive air sampling for semi-volatile organic chemicals. Environ Sci Process Impacts 22(10):1925–2002

    CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43(1):153–169

    CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42(40):9018–9040

    CAS  Google Scholar 

  • WHO (1983) Indoor air pollutants: exposure and health effects. EURO Rep Stud 78:1–42

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, 2nd edn. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Wolkoff P (1995) Volatile organic compounds – sources, measurements, emissions, and the impact on indoor air quality. Indoor Air 5(S3):5–73

    Google Scholar 

  • Xu Q, Li X, Mo J, Zhang Y (2011) Study on the performance evaluation of indoor VOC removel adsorbents (in Chinese). J Eng Thermophys 32(2):311–313

    CAS  Google Scholar 

  • Yamamoto N, Matsubasa T, Kumagai N, Mori S, Suzuki K (2002) A diffusive badge sampler for volatile organic compounds in ambient air and determination using a thermal desorption-GC/MS system. Anal Chem 74(2):484–487

    CAS  Google Scholar 

  • Zabiegala B, Gorecki T, Przyk E, Namiesnik J (2002) Permeation passive sampling as a tool for the evaluation of indoor air quality. Atmos Environ 36(17):2907–2916

    CAS  Google Scholar 

  • Zabiegala B, Krol S, Namiesnik J (2010) Monitoring VOCs in atmospheric air II. Sample collection and preparation. Trac-Trend Anal Chem 29(9):1101–1112

    Google Scholar 

  • Zhang X, Wania F (2012) Modeling the uptake of semivolatile organic compounds by passive air samplers: importance of mass transfer processes within the porous sampling media. Environ Sci Technol 46(17):9563–9570

    CAS  Google Scholar 

  • Zhang Y, Zhang Y, Shi W, Shang R, Cheng R, Wang X (2015) A new approach, based on the inverse problem and variation method, for solving building energy and environment problems: preliminary study and illustrative examples. Build Environ 91:204–218

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the Natural Science Foundation of China (No. 51908563), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011179), Science and Technology Program of Guangzhou (No. 202102020990), and the special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control (No. BZ0344KF20-11) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, J. (2022). Passive Samplers for Indoor Gaseous Pollutants. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-16-7680-2_17

Download citation

Publish with us

Policies and ethics