Skip to main content

Targeting Epithelial-to-Mesenchymal Transition for Breast Cancer Stem Cells Therapeutics

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Metastasis of breast cancer cells involves the dissemination from primary tumor sites and migration to distant organs forming secondary tumors, which causes a major hurdle to breast cancer treatment. Epithelial-to-Mesenchymal Transition (EMT) has been extensively studied in mammalian embryogenesis and disease conditions such as breast cancer invasion and metastasis. Any disturbance in the fine balance between the epithelial and mesenchymal phenotypes of breast cancer cells promotes metastatic development. EMT-induction in aggressive breast cancer cells gives rise to a subset of breast cancer stem cells (CSCs) which are highly migratory in nature and leads to resistance against chemotherapy. In this chapter, we analyze the EMT pathways and the interactions of EMT genes involved in breast cancer progression. We also analyze the promoter interactions of EMT genes with EMT transcription factors using in silico analysis and validate the mRNA expression of EMT genes in various breast cancer cells in literature. Finally, we analyze the interactions between EMT-TFs and genes with novel small molecules at preclinical stages and clinically approved drugs that can effectively target the breast CSCs to treat aggressive breast cancers. This study was intended to explore molecular EMT factors on breast CSCs that can be effectively targeted to mitigate breast cancer by repurposing of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol: J of the Pathol Soc Great Britain & Ireland 203(2):661–671

    Article  Google Scholar 

  • Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43-9006, Nexavar®), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Alvarado C, Segura-Cabrera A, Velázquez-Quesada I, Hernández-Esquivel MA, García-Pérez CA, Guerrero-Rodríguez SL, Ruiz AJ, Rodríguez-Moreno A, Pérez-Tapia SM, Velasco-Velázquez MA (2016) Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells. Oncotarget 7(17):23772

    Article  PubMed  PubMed Central  Google Scholar 

  • Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W (2007) The transcription factor ZEB1 (δ EF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ (2018) SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res 20(1):1–12

    Article  Google Scholar 

  • Artibani M, Sims AH, Slight J, Aitken S, Thornburn A, Muir M, Brunton VG, Del-Pozo J, Morrison LR, Katz E, Hastie ND (2017) WT1 expression in breast cancer disrupts the epithelial/mesenchymal balance of tumour cells and correlates with the metabolic response to docetaxel. Sci Rep 7(1):1–15

    Article  Google Scholar 

  • Bartholomeusz C, Xie X, Pitner MK, Kondo K, Dadbin A, Lee J, Saso H, Smith PD, Dalby KN, Ueno NT (2015) MEK inhibitor selumetinib (AZD6244; ARRY-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Mol Cancer Ther 14(12):2773–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 11(9):670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandão-Costa RM, Helal-Neto E, Vieira A, Barcellos-de-Souza P, Morgado-Diaz J, Barja-Fidalgo C (2020) Extracellular matrix derived from high metastatic human breast cancer triggers epithelial-mesenchymal transition in epithelial breast cancer cells through αvβ3 integrin. Int J Mol Sci 21(8):2995

    Article  Google Scholar 

  • Cho HJ, Oh N, Park JH, Kim KS, Kim HK, Lee E, Hwang S, Kim SJ, Park KS (2019) ZEB1 collaborates with ELK3 to repress E-cadherin expression in triple-negative breast cancer cells. Mol Cancer Res 17(11):2257–2266

    Article  CAS  PubMed  Google Scholar 

  • Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8b):2236–2252

    Article  PubMed  Google Scholar 

  • Cubas R, Zhang S, Li M, Chen C, Yao Q (2010) Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol Cancer 9(1):1–13

    Article  Google Scholar 

  • Das JK, Felty Q, Poppiti R, Jackson RM, Roy D (2018) Nuclear respiratory factor 1 acting as an oncoprotein drives estrogen-induced breast carcinogenesis. Cell 7(12):234

    Article  CAS  Google Scholar 

  • Das A, Narayanam MK, Paul S, Mukherjee P, Ghosh S, Dastidar DG, Chakrabarty S, Ganguli A, Basu B, Pal M, Chatterji U (2019) A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase–mediated activation of notch signaling. J Biol Chem 294(17):6733–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA (2011) The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One 6(10):e26514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolor A, Szoka FC Jr (2018) Digesting a path forward: the utility of collagenase tumor treatment for improved drug delivery. Mol Pharm 15(6):2069–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP (2013) Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32(11):1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385

    Article  CAS  PubMed  Google Scholar 

  • Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T, Ogata E (2007) Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98(1):127–133

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Chen Y, Yu L, Zheng C, Qi Y, Li Z, Yang Z, Zhang Y, Shi T, Luo J, Liu M (2013) Inhibition of breast cancer metastases by a novel inhibitor of TGFβ receptor 1. J Natl Cancer Inst 105(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Feldker N, Ferrazzi F, Schuhwerk H, Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D, Bönisch U, Lukassen S (2020) Genome-wide cooperation of EMT transcription factor ZEB 1 with YAP and AP-1 in breast cancer. EMBO J 39(17):e103209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagliardi M, Pitner MK, Park J, Xie X, Saso H, Larson RA, Bartholomeusz C (2020) Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Garrison K, Hahn T, Lee WC, Ling LE, Weinberg AD, Akporiaye ET (2012) The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother 61(4):511–521

    Article  CAS  PubMed  Google Scholar 

  • Gooding AJ, Schiemann WP (2020) Epithelial–mesenchymal transition programs and cancer stem cell phenotypes: mediators of breast cancer therapy resistance. Mol Cancer Res 18(9):1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto W, Kashiwagi S, Asano Y, Takada K, Takahashi K, Hatano T, Takashima T, Tomita S, Motomura H, Ohsawa M, Hirakawa K (2017) Circulating tumor cell clusters-associated gene plakoglobin is a significant prognostic predictor in patients with breast cancer. Biomark Res 5(1):1–8

    Article  Google Scholar 

  • Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, Zhao H (2015) Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res 17(1):1–16

    Article  CAS  Google Scholar 

  • Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25(15):3534–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groza IM, Braicu C, Jurj A, Zanoaga O, Lajos R, Chiroi P, Cojocneanu R, Paun D, Irimie A, Korban SS, Achimas-Cadariu P (2020) Cancer-associated stemness and epithelial-to-mesenchymal transition signatures related to breast invasive carcinoma prognostic. Cancer 12(10):3053

    Article  CAS  Google Scholar 

  • Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zürrer-Härdi U, Bell G, Tam WL (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder SK, Beauchamp RD, Datta PK (2005) A specific inhibitor of TGF-β receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 7(5):509–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Wu G, Chang C, Zhu F, Xiao Y, Li Q, Zhang T, Zhang L (2015) Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget 6(38):40907–40919

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, Chung VY, Chu YS, Matsumura N, Lai HC, Lee YF et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insua-Rodríguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55

    Article  PubMed  Google Scholar 

  • Iorns E, Clarke J, Ward T, Dean S, Lippman M (2012) Simultaneous analysis of tumor and stromal gene expression profiles from xenograft models. Breast Cancer Res Treat 131(1):321–324

    Article  PubMed  Google Scholar 

  • Juárez P, Fournier P, Mohammad KS, McKenna RC, Davis HW, Peng XH, Niewolna M, Mauviel A, Chirgwin JM, Guise TA (2017) Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget 8(49):86447–86462

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung HY, Fattet L, Tsai JH, Kajimoto T, Chang Q, Newton AC, Yang J (2019) Apical–basal polarity inhibits epithelial–mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol 21(3):359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadivar A, Kamalidehghan B, Javar HA, Karimi B, Sedghi R, Noordin MI (2017) Antiproliferation effect of imatinib mesylate on MCF7, T-47D tumorigenic and MCF 10A nontumorigenic breast cell lines via PDGFR-β, PDGF-BB, c-Kit and SCF genes. Drug Des Devel Ther 11:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katta S, Srivastava A, Thangapazham RL, Rosner IL, Cullen J, Li H, Sharad S (2019) Curcumin-gene expression response in hormone dependent and independent metastatic prostate cancer cells. Int J Mol Sci 20(19):4891

    Article  CAS  PubMed Central  Google Scholar 

  • Kim J, Kong J, Chang H, Kim H, Kim A (2016) EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget 7(51):85021

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Mustafa M, Kim CY, Kim MH (2017) Depletion of CTCF in breast cancer cells selectively induces cancer cell death via p53. J Cancer 8(11):2124

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67(19):9066–9076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Li Y (2014) Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem 115(10):1799–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lussier YA, Xing HR, Salama JK, Khodarev NN, Huang Y, Zhang Q, Khan SA, Yang X, Hasselle MD, Darga TE, Malik R (2011) MicroRNA expression characterizes oligometastasis (es). PLoS One 6(12):e28650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manupati K, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S, Das A (2017) Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. FEBS J 284(12):1830–1854

    Article  CAS  PubMed  Google Scholar 

  • Manupati K, Debnath S, Goswami K, Bhoj PS, Chandak HS, Bahekar SP, Das A (2019) Glutathione S-transferase omega 1 inhibition activates JNK-mediated apoptotic response in breast cancer stem cells. FEBS J 286(11):2167–2192

    Article  CAS  PubMed  Google Scholar 

  • Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A (2021) Activation of CD44-lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis:166228

    Google Scholar 

  • Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Mecham BH, Klus GT, Strovel J, Augustus M, Byrne D, Bozso P, Wetmore DZ, Mariani TJ, Kohane IS, Szallasi Z (2004) Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements. Nucleic Acids Res 32(9):e74–e74

    Article  PubMed  PubMed Central  Google Scholar 

  • Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888

    Article  PubMed  PubMed Central  Google Scholar 

  • Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W (2016) CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 143:532–546

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA, Huang RYJ, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45

    Article  CAS  PubMed  Google Scholar 

  • Obayashi S, Horiguchi J, Higuchi T, Katayama A, Handa T, Altan B, Bai T, Bao P, Bao H, Yokobori T, Nishiyama M (2017) Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients. Int J Oncol 51(3):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh H, Eliassen AH, Beck AH, Rosner B, Schnitt SJ, Collins LC, Connolly JL, Montaser-Kouhsari L, Willett WC, Tamimi RM (2017) Breast cancer risk factors in relation to estrogen receptor, progesterone receptor, insulin-like growth factor-1 receptor, and Ki67 expression in normal breast tissue. NPJ Breast Cancer 3(1):1–8

    Article  Google Scholar 

  • Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S, Xing F, Liu W, Pandey PR, Fukuda K, Modur V, Ghosh A, Wilber A, Watabe K (2012) Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 72(2):537–547

    Article  CAS  PubMed  Google Scholar 

  • Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI (2020) CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cell 9(7):1651

    Article  CAS  Google Scholar 

  • Park CY, Son JY, Jin CH, Nam JS, Kim DK, Sheen YY (2011) EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. Eur J Cancer 47(17):2642–2653

    Article  CAS  PubMed  Google Scholar 

  • Park S-Y, Kim M-J, Park S-A, Kim J-S, Min K-N, Kim D-K, Lim W, Nam J-S, Sheen YY (2015) Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells. Oncotarget 6(35):37526

    Article  PubMed  PubMed Central  Google Scholar 

  • Patacsil D, Tran AT, Cho YS, Suy S, Saenz F, Malyukova I, Ressom H, Collins SP, Clarke R, Kumar D (2012) Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem 23(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Rajabi H, Alam M, Takahashi H, Kharbanda A, Guha M, Ahmad R, Kufe D (2014) MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial–mesenchymal transition. Oncogene 33(13):1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Reka AK, Kuick R, Kurapati H, Standiford TJ, Omenn GS, Keshamouni VG (2011) Identifying inhibitors of epithelial-mesenchymal transition by connectivity map–based systems approach. J Thorac Oncol 6(11):1784–1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Y, Gonzalez-Mendez RR, Cadilla CL (2016) Evolution of the Twist subfamily vertebrate proteins: discovery of a signature motif and origin of the Twist1 glycine-rich motifs in the amino-terminus disordered domain. PLoS One 11(8):e0161029

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL (1987) Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1:1398–1402

    CAS  PubMed  Google Scholar 

  • Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997

    Article  PubMed  Google Scholar 

  • Serrano-Gomez SJ, Maziveyi M, Alahari SK (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15(1):1–14

    Article  Google Scholar 

  • Shankar J, Nabi IR (2015) Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One 10(3):e0119954

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S, Zhao X (2015) Notch1 signaling regulates the epithelial–mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer 14(1):1–17

    Article  CAS  Google Scholar 

  • Sheen YY, Kim MJ, Park SA, Park SY, Nam JS (2013) Targeting the transforming growth factor-β signaling in cancer therapy. Biomol & Therapeutic 21(5):323

    Article  CAS  Google Scholar 

  • Si L, Fu J, Liu W, Hayashi T, Nie Y, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T (2020) Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol Cell Biochem 463(1):189–201

    Article  CAS  PubMed  Google Scholar 

  • Skrzypek K, Majka M (2020) Interplay among SNAIL transcription factor, microRNAs, long non-coding RNAs, and circular RNAs in the regulation of tumor growth and metastasis. Cancer 12(1):209

    Article  CAS  Google Scholar 

  • Slyper M, Shahar A, Bar-Ziv A, Granit RZ, Hamburger T, Maly B, Peretz T, Ben-Porath I (2012) Control of breast cancer growth and initiation by the stem cell–associated transcription factor TCF3. Cancer Res 72(21):5613–5624

    Article  CAS  PubMed  Google Scholar 

  • Son JY, Park SY, Kim SJ, Lee SJ, Park SA, Kim MJ, Kim SW, Kim DK, Nam JS, Sheen YY (2014) EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther 13(7):1704–1716

    Article  CAS  PubMed  Google Scholar 

  • Steelman LS, Martelli AM, Cocco L, Libra M, Nicoletti F, Abrams SL, McCubrey JA (2016) The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol 82(5):1189–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemmler MP, Eccles RL, Brabletz S, Brabletz T (2019) Non-redundant functions of EMT transcription factors. Nat Cell Biol 21(1):102–112

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhou QM, Lu YY, Zhang H, Chen QL, Zhao M, Su SB (2019) Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules 24(6):1131

    Article  CAS  PubMed Central  Google Scholar 

  • Switzer CH, Cheng RY, Ridnour LA, Glynn SA, Ambs S, Wink DA (2012) Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 14(5):1–13

    Article  Google Scholar 

  • Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Barco SD, Martin-Castillo B, Menendez JA (2010) Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. Cell Cycle 9(18):3831–3838

    Article  Google Scholar 

  • Viale G (2012) The current state of breast cancer classification. Ann Oncol 23:x207–x210

    Article  PubMed  Google Scholar 

  • Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976

    CAS  PubMed  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Fuxe J (2009) A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nat Cell Biol 11(8):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F, Jove R (2008) SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 7:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J, Zhao J (2011) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30(16):1901–1911

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wu X, Chai F, Zhang Y, Jiang J (2016) Plasma prolactin and breast cancer risk: a meta-analysis. Sci Rep 6(1):1–7

    Google Scholar 

  • Wang D, Liu G, Wu B, Chen L, Zeng L, Pan Y (2018) Clinical significance of elevated S100A8 expression in breast cancer patients. Front Oncol 8:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, Zeng J (2021) Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics 11(5):2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward A, Balwierz A, Zhang JD, Küblbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin Ö (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128(3):657–666

    Article  CAS  PubMed  Google Scholar 

  • Wong KM, Song J, Wong YH (2021) CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep 11(1):1–18

    Article  Google Scholar 

  • Wu WS, You RI, Cheng CC, Lee MC, Lin TY, Hu CT (2017) Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Wu Q, Wang J, Liu Y, Gong X (2019) Epithelial cell adhesion molecule and epithelial-mesenchymal transition are associated with vasculogenic mimicry, poor prognosis, and metastasis of triple negative breast cancer. Int J Clin Exp Pathol 12(5):1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Chen L, Wang Y, Jin J, Xie X, Zhang J (2020) Hyaluronic acid predicts poor prognosis in breast cancer patients: a protocol for systematic review and meta-analysis. Medicine 99(22):e20438

    Article  PubMed  Google Scholar 

  • Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2(9):823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeeravalli R, Kaushik K, Das A (2021) TWIST1-mediated transcriptional activation of PDGFRβ in breast cancer stem cells promotes tumorigenesis and metastasis. Biochim Biophys Acta Mol Basis Dis 1867(7):166141

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Feng M, Zheng G, Chen Y, Wang X, Pen B, Yin J, Yu Y, He Z (2012) Chemoresistance to 5-fluorouracil induces epithelial–mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun 417(2):679–685

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Shi G, Zhang H, Xiong Q, Cheng F, Wang H, Luo J, Zhang Y, Shi P, Xu J, Fu J (2021) Dexamethasone enhances the lung metastasis of breast cancer via a PI3K-SGK1-CTGF pathway. Oncogene. https://doi.org/10.1038/s41388-021-01944-w

  • Zhong W, Chen S, Qin Y, Zhang H, Wang H, Meng J, Huai L, Zhang Q, Yin T, Lei Y, Han J (2017) Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-κB/miR-17/E-cadherin pathway. Oncotarget 8(62):104855

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AD acknowledges institutional funding provided by the Council of Scientific and Industrial Research (CSIR), Ministry of Science & Technology, Government of India for Projects under Healthcare theme. The fellowship provided by CSIR-JRF/SRF to SS and DS is gratefully acknowledged (Manuscript Communication number: IICT/Pubs./2021/238).

Competing Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Das Ph.D. .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suthakaran, S., Singh, D., Deshmukh, R.K., Das, A. (2022). Targeting Epithelial-to-Mesenchymal Transition for Breast Cancer Stem Cells Therapeutics. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics