Skip to main content

Architectures for Quantum Information Processing

  • Living reference work entry
  • First Online:
Handbook of Computer Architecture

Abstract

Quantum computing is changing the way people think about computing. Significant strides in research and development for managing and harnessing the power of quantum systems has been made in recent years, demonstrating the potential for transformative quantum technology. Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers. IBM’s first public access to true quantum computers through the cloud and Google’s demonstration of quantum supremacy are among the accomplishments. Besides, a slew of other commercial, government, and academic projects are in the works to create next-generation hardware, a software stack to support the hardware ecosystem, and viable quantum algorithms. This chapter covers various quantum computing architectures including many hardware technologies that are being investigated. It also discusses a variety of challenges, including numerous errors/noises that plague the quantum computers. An overview of literature investigating noise-resilience approaches is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abhari AJ, Faruque A, Dousti MJ, Svec L, Catu O, Chakrabati A, Chiang C-F, Vanderwilt S, Black J, Chong F (2012) Scaffold: quantum programming language. Technical report, Department of Computer Science, Princeton University

    Google Scholar 

  • Abrams DM, Didier N, Johnson BR, da Silva MP, Ryan CA (2020) Implementation of XY entangling gates with a single calibrated pulse. Nat Electr 3(12):744–750

    Article  Google Scholar 

  • Alam M, Ash-Saki A, Ghosh S (2020a) Circuit compilation methodologies for quantum approximate optimization algorithm. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, pp 215–228

    Google Scholar 

  • Alam M, Ash-Saki A, Ghosh S (2020b) An efficient circuit compilation flow for quantum approximate optimization algorithm. In: 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, pp 1–6

    Google Scholar 

  • Alam M, Ash-Saki A, Li J, Chattopadhyay A, Ghosh S (2020c) Noise resilient compilation policies for quantum approximate optimization algorithm. In: Proceedings of the 39th International Conference on Computer-Aided Design, pp 1–7

    Google Scholar 

  • Apolloni B, Cesa-Bianchi N, De Falco D (1990) A numerical implementation of “quantum annealing”. In: Stochastic Processes, Physics and Geometry: Proceedings of the Ascona-Locarno Conference, pp 97–111

    Google Scholar 

  • Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510

    Article  Google Scholar 

  • Ash-Saki A, Alam M, Ghosh S (2019) Qure: qubit re-allocation in noisy intermediate-scale quantum computers. In: Proceedings of the 56th Annual Design Automation Conference 2019, pp 1–6

    Google Scholar 

  • Bhattacharjee D, Saki AA, Alam M, Chattopadhyay A, Ghosh S (2019) MUQUT: multi-constraint quantum circuit mapping on NISQ computers. In: 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, pp 1–7

    Google Scholar 

  • Broadbent A, Kashefi E (2009) Parallelizing quantum circuits. Theor Comput Sci 410(26):2489–2510

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon NP, Kuemmeth F (2021) Semiconductor qubits in practice. Nat Rev Phys 3(3):157–177

    Article  Google Scholar 

  • Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74(20):4091

    Article  Google Scholar 

  • Cirq documentation. https://cirq.readthedocs.io/en/stable/

  • Cross AW, Bishop LS, Smolin JA, Gambetta JM (2017) Open quantum assembly language. arXiv preprint arXiv:1707.03429

    Google Scholar 

  • Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc Lond Ser A: Math Phys Sci 439(1907):553–558

    Google Scholar 

  • Ding Y, Gokhale P, Lin SF, Rines R, Propson T, Chong FT (2020) Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, pp 201–214

    Google Scholar 

  • Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028

    Google Scholar 

  • Fowler AG (2011) Constructing arbitrary Steane code single logical qubit fault-tolerant gates. Quantum Inf Comput 11(9–10):867–873

    MathSciNet  MATH  Google Scholar 

  • Fu P, Kishida K, Ross NJ, Selinger P (2020) A tutorial introduction to quantum circuit programming in dependently typed proto-quipper. In: International Conference on Reversible Computation. Springer, pp 153–168

    MATH  Google Scholar 

  • Gambetta JM, Córcoles AD, Merkel ST, Johnson BR, Smolin JA, Chow JM, Ryan CA, Rigetti C, Poletto S, Ohki TA et al (2012) Characterization of addressability by simultaneous randomized benchmarking. Phys Rev Lett 109(24):240504

    Article  Google Scholar 

  • Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper: a scalable quantum programming language. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp 333–342

    Google Scholar 

  • Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’96. Association for Computing Machinery, Philadelphia, pp 212–219

    Chapter  Google Scholar 

  • Heim B, Rønnow TF, Isakov SV, Troyer M (2015) Quantum versus classical annealing of Ising spin glasses. Science 348(6231):215–217

    Article  MathSciNet  MATH  Google Scholar 

  • Heim B, Soeken M, Marshall S, Granade C, Roetteler M, Geller A, Troyer M, Svore K (2020) Quantum programming languages. Nat Rev Phys 2(12):709–722

    Article  Google Scholar 

  • Kadowaki T, Nishimori H (1998) Ricottura quantistica nel modello di Ising trasversale. Fis Rev E 58(5):5355

    Google Scholar 

  • Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J , Gustavsson S, Oliver WD (2020) Superconducting qubits: current state of play. Annu Rev Condens Matter Phys 11:369–395

    Article  Google Scholar 

  • Kliuchnikov V, Maslov D, Mosca M (2012) Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates. arXiv preprint arXiv:1206.5236

    Google Scholar 

  • Lanzagorta M, Uhlmann J (2009) Quantum computer science. Morgan and Claypool Publishers. ISBN:9781598297324

    Google Scholar 

  • Li G, Ding Y, Xie Y (2019) Tackling the qubit mapping problem for NISQ-Era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 1001–1014

    Google Scholar 

  • Li G, Wu A, Shi Y, Javadi-Abhari A, Ding Y, Xie Y (2021) On the co-design of quantum software and hardware. In: Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication, pp 1–7

    Google Scholar 

  • McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS (2020) Xacc: a system-level software infrastructure for heterogeneous quantum–classical computing. Quantum Sci Technol 5(2):024002

    Article  Google Scholar 

  • Montanaro A (2016) Quantum algorithms: an overview. In: NPJ Quantum Information, vol 2, p 1

    Google Scholar 

  • Morita S, Nishimori H (2008) Mathematical foundation of quantum annealing. J Math Phys 49(12):125210

    Article  MathSciNet  MATH  Google Scholar 

  • Murali P, Baker JM, Javadi-Abhari A, Chong FT, Martonosi M (2019) Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 1015–1029

    Google Scholar 

  • Murali P, McKay DC, Martonosi M, Javadi-Abhari A (2020a) Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 1001–1016

    Google Scholar 

  • Murali P, Debroy DM, Brown KR, Martonosi M (2020b) Architecting noisy intermediate-scale trapped ion quantum computers. In: 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, pp 529–542

    Google Scholar 

  • Nielsen MA, Chuang I (2002) Quantum computation and quantum information. American Association of Physics Teachers

    MATH  Google Scholar 

  • Patel T, Tiwari D (2020) DisQ: a novel quantum output state classification method on IBM quantum computers using openpulse. In: Proceedings of the 39th International Conference on Computer-Aided Design, pp 1–9

    Google Scholar 

  • Peruzzo A et al (2013) A variational eigenvalue solver on a quantum processor. eprint. arXiv preprint arXiv:1304.3061

    Google Scholar 

  • Qiskit documentation. https://qiskit.org/documentation/

  • Qutip documentation. http://qutip.org/documentation.html

  • Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M (2017) Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci 114(29):7555–7560

    Article  Google Scholar 

  • Rios F, Selinger P (2017) A categorical model for a quantum circuit description language. arXiv preprint arXiv:1706.02630

    Google Scholar 

  • Ross NJ (2015) Algebraic and logical methods in quantum computation. arXiv preprint arXiv:1510.02198

    Google Scholar 

  • Saki AA, Topaloglu RO, Ghosh S (2022) Muzzle the shuttle: efficient compilation for multi-trap trapped-ion quantum computers. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp 322–327

    Google Scholar 

  • Santoro GE, Tosatti E (2006) Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J Phys A Math Gen 39(36):R393

    Article  MathSciNet  MATH  Google Scholar 

  • Shende VV, Prasad AK, Markov IL, Hayes JP (2002) Reversible logic circuit synthesis. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, pp 353–360

    Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science

    Google Scholar 

  • Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev 41(2):303–332

    Article  MathSciNet  MATH  Google Scholar 

  • Siraichi MY, Fernandes dos Santos V, Collange C, Magno Quintão Pereira F (2018) Qubit allocation. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization, pp 113–125

    Google Scholar 

  • Smith RS, Curtis MJ, Zeng WJ (2016) A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355

    Google Scholar 

  • Staq-GitHub. https://github.com/softwareqinc/staq

  • Steiger DS, Häner T, Troyer M (2018) Projectq: an open source software framework for quantum computing. Quantum 2:49

    Article  Google Scholar 

  • Strawberry fields. GitHub. https://github.com/xanaduai/strawberryfields

  • Svore K, Geller A, Troyer M, Azariah J, Granade C, Heim B, Kliuchnikov V, Mykhailova M, Paz A, Roetteler M (2018) Q# enabling scalable quantum computing and development with a high-level DSL. In: Proceedings of the Real World Domain Specific Languages Workshop 2018, pp 1–10

    Google Scholar 

  • Tannu SS, Qureshi MK (2019) Not all qubits are created equal: a case for variability-aware policies for NISQ-Era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 987–999

    Google Scholar 

  • tket-GitHub. https://github.com/cqcl/pytket

  • Trauzettel B, Bulaev DV, Loss D, Burkard G (2007) Spin qubits in graphene quantum dots. Nat Phys 3(3):192–196

    Article  Google Scholar 

  • Treinish M et al (2019) Qiskit: an open-source framework for quantum computing

    Google Scholar 

  • Wright K, Beck KM, Debnath S, Amini JM, Nam Y, Grzesiak N, Chen J-S, Pisenti NC, Chmielewski M, Collins C et al (2019) Benchmarking an 11-qubit quantum computer. Nat Commun 10(1):1–6

    Article  Google Scholar 

  • Wu X-C, Debroy DM, Ding Y, Baker JM, Alexeev Y, Brown KR, Chong FT (2021) Tilt: achieving higher fidelity on a trapped-ion linear-tape quantum computing architecture. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, pp 153–166

    Google Scholar 

  • Zulehner A (2019) Evaluating the flexibility of a* for mapping quantum circuits. In: Thomsen MK, Soeken M (eds) Reversible computation. Springer International Publishing, Cham, pp 171–190

    Chapter  Google Scholar 

  • Zulehner A, Paler A, Wille R (2018) An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans Comput-Aided Design Integr Circuits Syst 38(7):1226–1236

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by NSF (CNS-1814710, DGE-1821766, CNS-2129675, CCF-2210963, DGE-2113839, ITE-2040667), gifts from Intel, and seed grants from Penn State ICDS and Huck Institutes of the Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaroop Ghosh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Upadhyay, S., Alam, M., Ghosh, S. (2023). Architectures for Quantum Information Processing. In: Chattopadhyay, A. (eds) Handbook of Computer Architecture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6401-7_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6401-7_64-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6401-7

  • Online ISBN: 978-981-15-6401-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics