Skip to main content

Assessing the Contributions of Lipid Profile and Oxidative Lipid Damage to Carcinogenesis

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Lipids are integral components in the body, performing various structural and functional roles – as energy reservoirs, insulators, cell membrane components, hormone precursors, and as key signalling agents which affect cellular metabolism and gene expression. Dysregulation of redox proteins/enzymes involved in the process of redox homeostasis and generation of nonphysiological levels of free radicals causes oxidative stress, an important nexus in the pathogenesis and pathophysiology of several diseases, including cancer. Oxidative damage to lipids causes lipid peroxidation, a process which leads to the formation of toxic aldehydes and other secondary products, which sometimes have beneficial roles at physiological levels. However, oxidative stress-mediated lipid peroxidation products initiate carcinogenesis through macromolecular damage (DNA/RNA/protein adduction), inhibition of DNA repair, and alteration of the cellular transcriptome. The problem of lipid damage poses a conundrum, where lipid damage/oxidation products can be both beneficial as well as harmful in a dose-dependent manner. This chapter is aimed at deciphering the mechanisms of lipid oxidation and the cellular signalling events mediated by lipid damage products which determine important cellular outcomes. The toxic products cause a plethora of effects such as impairment of mitochondrial energy metabolism, membrane protein dysfunction, alteration of the cellular transcriptome, upregulation of antioxidant gene transcription, depletion of the cellular thiol pool, genomic instability, ferroptosis, etc., and thereby, pathogenesis of several cancers. The roles of dietary lipids, blood lipid profile, cellular distribution of diverse endogenous and/or dietary lipids, and finally, the currently known mechanisms of oxidative lipid damage in carcinogenesis/tumorigenesis are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

4HNE/HNE:

4-hydroxynonenal

AA:

Arachidonic acid

ALA:

Alpha-linolenic acid

ALOX:

Lipoxygenase

ARE:

Antioxidant response element

CAT:

Catalase

CLs:

Cardiolipins

COQ10/UQ:

CoenzymeQ10/ubiquinone

COX-2:

Cyclooxygenase

CROALD:

Crotonaldehyde

CYP450/CYPs:

Cytochrome P450

DHA:

Docosahexaenoic acid

DODE:

9,12-dioxo-(10E)-dodecenoic acid

DOOE:

5,8-dioxo10(E)-octenoic acid

EBV:

Epstein–Barr virus

ECM:

Extracellular matrix

EDE:

4,5-epoxy-(2E)-decenal

EDGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EHN/EH:

2,3-epoxy-4-hydroxynonanal

EPA:

Eicosapentaenoic acid

ERK:

Extracellular signal-regulated kinase

ESRE:

Ethanol and stress response element

ETC:

Electron transfer chain

FA/FAs:

Fatty acids

FRs:

Free radicals

GA:

Gondoic acid

GCL:

γ-glutamylcysteine ligase/glutamate-cysteine ligase

GLA:

Gamma-linolenic acid

GPx:

Glutathione peroxidase

GSK3β:

Glycogen synthase kinase-3 beta

GST:

Glutathione S-transferases

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HDHA:

Hydroxy-docosahexaenoic acid

HEPE:

Hydroxyeicosapentaenoic acid

HETE:

Hydroxyeicosatetraenoic acid

HHE:

4-hydroxy-2-hexenal

HHV:

Human herpes virus

HO:

Heme oxygenase

HODE:

Hydroxyoctadecadienoic acid

HPHE:

4-hydroperoxy-2-heptenal

HPNE:

4-hydroperoxy-2-nonenal

HSE:

Heat-stress-responsive element

HTLV:

Human T-lymphotropic virus

HUE:

4-hydroxyundecenal

HX:

Hepoxilins

iNOS:

Inducible nitric oxide synthase

Keap1 :

Kelch-like ECH-associated protein 1

LA:

Linoleic acid

LOOHs:

Lipid hydroperoxides

LOX:

Lipoxygenase

LPO:

Lipid peroxidation

LT:

Leukotrienes

MAPK:

Mitogen-activated protein kinase

MaR:

Maresins

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

MUFA:

Monounsaturated fatty acids

NA:

Nervonic acid

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NOS:

Nitric oxide synthases

NOX:

NADPH oxidase

Nrf-2:

Nuclear factor erythroid 2–related factor 2

NSRE :

Nutrient-sensing response element

OA:

Oleic acid

ODC :

Ornithine decarboxylase

ONE :

4-oxo-(2E)-nonenal

OXPHOS:

Oxidative phosphorylation

PA:

Palmitic acid

PAHs:

Polyaromatic hydrocarbons

PD:

Protectin

PGH2:

Prostaglandin

PI3K:

Phosphatidylinositol-3-kinase

PLs:

Phospholipids

PMRS:

Plasma membrane redox system

PPAR:

Peroxisome proliferator-activated receptor

PUFA:

Polyunsaturated fatty acids

RNS:

Reactive nitrogen species

ROI:

Reactive oxygen intermediates

ROS:

Reactive oxygen species

RSS:

Reactive sulfur species

Rv:

Resolvins

SDHA:

Succinate dehydrogenase subunit-A

SLs:

Sphingolipids

SOD:

Superoxide dismutase

SSBs/DSBs:

Single/double-strand breaks

TBARS:

Thiobarbituric acid reactive substances

TGs:

Triglycerides

TNFα:

Tumor necrosis factor

TX:

Thromboxane

UCP:

Uncoupler protein

VA:

Vaccenic acid

XO:

Xanthine oxidase

References

  • Auten RL, Davis JM (2009) Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 66(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:1–31. Article ID 360438

    Article  CAS  Google Scholar 

  • Britton RS, Bacon BR, Recknagel RO (1987) Lipid peroxidation and associated hepatic organelle dysfunction in iron overload. Chem Phys Lipids 45(2–4):207–239

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro RM (2014) Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta (BBA)-Biomembr 1838(1):438–444

    Article  CAS  Google Scholar 

  • Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20(12):1615–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedon PC, Tannenbaum SR (2004) Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 423(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Dianzani MU (1998) 4-Hydroxynonenal and cell signalling. Free Radic Res 28(6):553–560

    Article  CAS  PubMed  Google Scholar 

  • Domene C, Bond PJ, Deol SS, Sansom MS (2003) Lipid/protein interactions and the membrane/water interfacial region. J Am Chem Soc 125(49):14966–14967

    Article  CAS  PubMed  Google Scholar 

  • Dryden GW, Deaciuc I, Arteel G, McClain CJ (2005) Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep 7(4):308–316

    Article  PubMed  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22(16):4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elabdeen HRZ, Mustafa M, Szklenar M, Rühl R, Ali R, Bolstad AI (2013) Ratio of pro-resolving and pro-inflammatory lipid mediator precursors as potential markers for aggressive periodontitis. PLoS One 8(8):e70838

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Hu W, Tang M-s (2004) Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc Natl Acad Sci 101(23):8598–8602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco R, Vargas MR (2018) Redox biology in neurological function, dysfunction, and aging. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA

    Google Scholar 

  • Gentile F, Arcaro A, Pizzimenti S, Daga M, Cetrangolo GP, Dianzani C, Lepore A, Graf M, Ames PR, Barrera G (2017) DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet 4(2):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez M (1992) Lipid peroxidation and tumor growth: an inverse relationship. Med Hypotheses 38(2):106–110

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899(1):136–147

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nature Ecol Evol:1–18

    Google Scholar 

  • Jacob VD, Manoj KM (2019) Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology 10:7–16

    Article  Google Scholar 

  • Janakiram NB, Rao CV (2009) Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr Mol Med 9(5):565–579

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23(9):734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome–insights from yeast lipidomics. PLoS One 7(4):e35063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoj KM, Parashar A, Venkatachalam A, Goyal S, Singh PG, Gade SK, Periyasami K, Jacob RS, Sardar D, Singh S (2016) Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals’ obligatory involvement in such redox reactions. Biochimie 125:91–111

    Article  CAS  PubMed  Google Scholar 

  • Maulucci G, Daniel B, Cohen O, Avrahami Y, Sasson S (2016) Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Asp Med 49:49–77

    Article  CAS  Google Scholar 

  • Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25(12):1819–1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47(5):469–484

    Article  CAS  PubMed  Google Scholar 

  • Parashar A, Gideon DA, Manoj KM (2018) Murburn concept: a molecular explanation for hormetic and idiosyncratic dose responses. Dose-Response 16(2):1559325818774421

    Article  PubMed  PubMed Central  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Kassan A, Busija AR, Rangamani P, Patel HH (2016) The plasma membrane as a capacitor for energy and metabolism. Am J Phys Cell Phys 310(3):C181–C192

    Google Scholar 

  • Sämfors S, Fletcher JS (2020) Lipid diversity in cells and tissue using imaging SIMS. Annu Rev Anal Chem 13(1):249–271

    Article  Google Scholar 

  • Sauer LA, Dauchy RT, Blask DE, Armstrong BJ, Scalici S (1999) 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Res 59(18):4688–4692

    CAS  PubMed  Google Scholar 

  • Schaur RJ, Siems W, Bresgen N, Eckl PM (2015) 4-Hydroxy-nonenal—a bioactive lipid peroxidation product. Biomol Ther 5(4):2247–2337

    CAS  Google Scholar 

  • Schönfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241

    Article  PubMed  CAS  Google Scholar 

  • Siddique YH, Ara G, Afzal M (2012) Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes. Dose-Response 10(1) dose-response. 10-002. Siddique

    Google Scholar 

  • Steinberg P (2019) Red meat-derived nitroso compounds, lipid peroxidation products and colorectal cancer. Foods 8(7):252

    Article  CAS  PubMed Central  Google Scholar 

  • Sugihara T, Kinoshita T, Aoyagi S, Tsujino Y, Osakai T (2008) A mechanistic study of the oxidation of natural antioxidants at the oil/water interface using scanning electrochemical microscopy. J Electroanal Chem 612(2):241–246

    Article  CAS  Google Scholar 

  • Toledo JC Jr, Augusto O (2012) Connecting the chemical and biological properties of nitric oxide. Chem Res Toxicol 25(5):975–989

    Article  CAS  PubMed  Google Scholar 

  • Vomund S, Schäfer A, Parnham MJ, Brüne B, Von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18(12):2772

    Article  PubMed Central  CAS  Google Scholar 

  • Wang D, DuBois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Dhingra K, Hittelman WN, Liehr JG, De Andrade M, Li D (1996) Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol Prev Biomarkers 5(9):705–710

    CAS  Google Scholar 

  • West JD, Marnett LJ (2005) Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem Res Toxicol 18(11):1642–1653

    Article  CAS  PubMed  Google Scholar 

  • Zarkovic K, Uchida K, Kolenc D, Hlupic L, Zarkovic N (2006) Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis. Free Radic Res 40(6):543–552

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Yin H (2015) Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol 4:193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gideon, D.A.M., James, J. (2021). Assessing the Contributions of Lipid Profile and Oxidative Lipid Damage to Carcinogenesis. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_185-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_185-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics