Skip to main content

Biophysics and Mechanisms of Spinal Cord Stimulation for Chronic Pain

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Spinal cord stimulation (SCS) is a well-established treatment for chronic pain. Despite substantial research effort and significant technical advances, clinical success rates have remained stagnant for half a century. Only through increased understanding of the neural mechanisms that drive SCS efficacy will the field improve outcomes for the large patient population suffering from chronic pain. This work seeks to summarize current knowledge and research directions related to the biophysics and mechanisms behind modern SCS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

BDNF:

Brain-derived neurotrophic factor

CFA:

Complete Freud’s adjuvant

CRPS:

Complex regional pain syndrome

CSF:

Cerebrospinal fluid

DC:

Dorsal columns

DCN:

Dorsal column nuclei

DDH:

Deep dorsal horn

DH:

Dorsal horn

DR:

Dorsal roots

DRG:

Dorsal root ganglion

DRN:

Dorsal raphe nucleus

ECAP:

Evoked compound action potential

EEG:

Electroencephalogram

EPSC:

Excitatory postsynaptic current

FBSS:

Failed back surgery syndrome

FEM:

Finite element method

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma-aminobutyric acid

IPSC:

Inhibitory postsynaptic current

KHF:

Kilohertz frequency

LC:

Locus coeruleus

LPB:

Lateral parabrachial nucleus

mIPSC:

Miniature inhibitory postsynaptic current

MT:

Motor threshold

NS:

Nociceptive specific

PAG:

Periaqueductal gray matter

PKCγ:

γ variant of protein kinase C

RCT:

Randomized controlled trial

RVLM:

Rostral ventrolateral medial nucleus

SCS:

Spinal cord stimulation

SDH:

Superficial dorsal horn

VPL:

Ventral posterolateral nucleus of the thalamus

WDR:

Wide dynamic range

References

  1. Nahin, R.L.: Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain. 16(8), 769–780 (2015)

    Article  Google Scholar 

  2. Meyr, A.J., Saffran, B.: The pathophysiology of the chronic pain cycle. Clin. Podiatr. Med. Surg. 25(3), 327–346 (2008)

    Article  Google Scholar 

  3. Elliott, A.M., Smith, B.H., Penny, K.I., Cairns Smith, W., Alastair Chambers, W.: The epidemiology of chronic pain in the community. Lancet. 354(9186), 1248–1252 (1999)

    Article  Google Scholar 

  4. Gaskin, D.J., Richard, P.: The economic costs of pain in the United States. J. Pain. 13(8), 715–724 (2012)

    Article  Google Scholar 

  5. Perl, E.R.: Ideas about pain, a historical view. Nat. Rev. Neurosci. 8, 71–80 (2007)

    Article  Google Scholar 

  6. Rosenblum, A., Marsch, L.A., Joseph, H., Portenoy, R.K.: Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp. Clin. Pychopharmacol. 16(5), 405–416 (2008)

    Article  Google Scholar 

  7. Vowles, K.E., McEntee, M.L., Julnes, P.S., Frohe, T., Ney, J.P., van der Goes, D.N.: Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain. 156(4), 569–576 (2015)

    Article  Google Scholar 

  8. WONDER, C.: Overdose Rates Involving Opioids, by Type, United States, 2000–2017. Atlanta, GA, US Department of Health and Human Services, CDC/NCHS (2018)

    Google Scholar 

  9. Rosenblatt, R.A., Catlin, M.: Opioids for chronic pain: first do no harm. Ann. Fam. Med. 10(4), 300–301 (2012)

    Article  Google Scholar 

  10. Zhang, T.C., Janik, J.J., Grill, W.M.: Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 1569, 19–31 (2014)

    Article  Google Scholar 

  11. North, R.B., Kidd, D.H., Zahurak, M., James, C.S., Long, D.M.: Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery. 32(3), 384–395 (1993)

    Article  Google Scholar 

  12. Linderoth, B., Foreman, R.D.: Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation. 20(6), 525–533 (2017)

    Article  Google Scholar 

  13. Wall, P.D.: Presynaptic control of impulses at the first central synapse in the cutaneous pathway. Prog. Brain Res. 12, 92–118 (1964)

    Article  Google Scholar 

  14. Melzack, R., Wall, P.D.: Pain mechanisms: a new theory. Science. 150(3699), 971–979 (1965)

    Article  Google Scholar 

  15. Wall, P.D., Sweet, W.H.: Temporary abolition of pain in man. Science. 155(3758), 108–109 (1967)

    Article  Google Scholar 

  16. Shealy, C.N., Taslitz, N., Mortimer, J.T., Becker, D.P.: Electrical inhibition of pain: experimental evaluation. Anesth. Analg. 46(3), 299–306 (1967)

    Article  Google Scholar 

  17. Shealy, C.N., Mortimer, J.T., Reswick, J.B.: Electrical inhibition of pain by stimulation of the dorsal columns. Anesth. Analg. 46(4), 489–491 (1967)

    Article  Google Scholar 

  18. Shealy, C.N., Mortimer, J.T., Hagfors, N.R.: Dorsal column electroanalgesia. J. Neurosurg. 32, 560–564 (1970)

    Article  Google Scholar 

  19. Deer, T.R., Mali, J.M.: History of Neurostimulation Atlas of Implantable Therapies for Pain Management, 2nd edn, p. 4. Springer, New York (2016)

    Google Scholar 

  20. FDA: P130022, Nevro Senza Spinal Cord Stimulation (SCS) System. https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130022A.pdf (2015)

  21. FDA: P010032, Genesis Neurostimulation (IPG) System. https://www.accessdata.fda.gov/cdrh_docs/pdf/P010032A.pdf (2001)

  22. FDA: P030017 PRECISION Spinal Cord Stimulation (SCS) System. https://www.accessdata.fda.gov/cdrh_docs/pdf3/P030017A.pdf (2004)

  23. Song, J.J., Popescu, A., Bell, R.L.: Present and Potential Use of Spinal Cord Stimulation to Control Chronic Pain. Pain Physician. 17, 235–246 (2014)

    Google Scholar 

  24. Deer, T., Slavin, K.V., Amirdelfan, K., North, R.B., Burton, A.W., Yearwood, T.L., Tavel, E., Staats, P., Falowski, S., Pope, J., Justiz, R., Fabi, A.Y., Taghva, A., Paicius, R., Houden, T., Wilson, D.: Success Using Neuromodulation With BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation. 21(1), 56–66 (2018)

    Article  Google Scholar 

  25. Kapural, L., Yu, C., Doust, M.W., Gliner, B.E., Vallejo, R., Sitzman, T., Amirdelfan, K., Morgan, D.M., Brown, L.L., Yearwood, T.L., Bundshcu, R., Burton, A.W., Yang, T., Benyamin, R., Burgher, A.H.: Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 123(4), 851–860 (2015)

    Article  Google Scholar 

  26. Al-Kaisy, A., Van Buyten, J.-P., Smet, I., Palmisani, S., Pang, D., Smith, T.: Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med. 15, 347–354 (2014)

    Article  Google Scholar 

  27. North, J.M., Hong, K.J., Cho, P.Y.: Clinical outcomes of 1 kHz subperception spinal cord stimulation in implanted patients with failed paresthesia-based stimulation: results of a prospective randomized controlled trial. Neuromodulation. 19(7), 731–737 (2016)

    Article  Google Scholar 

  28. Veizi, E., Hayek, S.M., North, J., Brent Chafin, T., Yearwood, T.L., Raso, L., Frey, R., Cairns, K., Berg, A., Brendel, J., Haider, N., McCarty, M., Vucetic, H., Sherman, A., Chen, L., Mekel-Bobrov, N.: Spinal Cord Stimulation (SCS) with anatomically guided (3D) neural targeting shows superior chronic axial low back pain relief compared to traditional SCS-LUMINA study. Pain Med. 18(8), 1534–1548 (2017)

    Google Scholar 

  29. Sdrulla, A.D., Guan, Y., Raja, S.N.: Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract. 18(8), 1048–1067 (2018)

    Article  Google Scholar 

  30. Kumar, K., Taylor, R., Jacques, L., Eldabe, S., Meglio, M., Molet, J., Thomson, S., O’Callaghan, J., Eisenberg, E., Milbouw, G., Buchser, E., Fortini, G., Richardson, J., North, R.: Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 132, 179–188 (2007)

    Article  Google Scholar 

  31. Thomson, S.J., Tavakkolizadeh, M., Love-Jones, S., Patel, N.K., Gu, J.W., Bains, A., Doan, Q., Moffitt, M.: Effects of rate on analgesia in kilohertz frequency spinal cord stimulation: results of the PROCO randomized controlled trial (in eng). Neuromodulation. 21(1), 67–76 (2018)

    Article  Google Scholar 

  32. Taylor, R.S., Desai, M.J., Rigoard, P., Taylor, R.J.: Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis. Pain Pract. 14(6), 489–505 (2014)

    Article  Google Scholar 

  33. de Vos, C.C., Meier, K., Zaalberg, P.B., Nijhuis, H.J., Duyvendak, W., Vesper, J., Enggaard, T.P., Lenders, M.W.: Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain. 155(11), 2426–2431 (2014)

    Article  Google Scholar 

  34. Crosby, N.D., Janik, J.J., Grill, W.M.: Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation (in eng). J. Neurophysiol. 117(1), 136–147 (2017)

    Article  Google Scholar 

  35. Song, Z., Viisanen, H., Meyerson, B.A., Pertovaara, A., Linderoth, B.: Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation. 17(3), 226–235 (2014)

    Article  Google Scholar 

  36. Todd, A.J.: Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp. Physiol. 87(2), 245–249 (2002)

    Article  Google Scholar 

  37. Olson, W., Abdus-Saboor, I., Cui, L., Burdge, J., Raabe, T., Ma, M., Luo, W.: Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors (in eng). elife. 6, e29507 (2017)

    Article  Google Scholar 

  38. Duan, B., Cheng, L., Ma, Q.: Spinal circuits transmitting mechanical pain and itch. Neurosci. Bull. 34(1), 186–193 (2018)

    Article  Google Scholar 

  39. Seal, R.P.: Illuminating the gap: neuronal cross-talk within sensory ganglia and persistent pain. Neuron. 91(5), 950–951 (2016)

    Article  Google Scholar 

  40. Wang, H., Zylka, M.J.: Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J. Neurosci. 29(42), 13202–13209 (2009)

    Article  Google Scholar 

  41. Uta, D., Furue, H., Pickering, A.E., Rashid, M.H., Mizuguchi-Takase, H., Katafuchi, T., Imoto, K., Yoshimura, M.: TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur. J. Neurosci. 31(11), 1960–1973 (2010)

    Article  Google Scholar 

  42. Braz, J., Solorzano, C., Wang, X., Basbaum, A.I.: Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron. 82(3), 522–536 (2014)

    Article  Google Scholar 

  43. Hee Jung, C., Basbaum, A.I.: Arborization of single axons of the spinal dorsolateral funiculus to the contralateral superficial dorsal horn. Brain Res. 477(1), 344–349 (1989)

    Article  Google Scholar 

  44. Light, A.R.: The spinal terminations of single, physiologically characterized axons originating in the pontomedullary raphe of the cat (in eng). J. Comp. Neurol. 234(4), 536–548 (1985)

    Article  Google Scholar 

  45. Jones, S.L., Light, A.R.: Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J. Comp. Neurol. 297(2), 267–282 (1990)

    Article  Google Scholar 

  46. Deer, T.R., Pope, J.E.: Dorsal root ganglion stimulation approval by the Food and Drug Administration: advice on evolving the process. Expert. Rev. Neurother. 16(10), 1123–1125 (2016)

    Article  Google Scholar 

  47. Krames, E.S.: The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review. Neuromodulation. 18, 24–32 (2015)

    Article  Google Scholar 

  48. Niu, J., Ding, L., Li, J.J., Kim, H., Liu, J., Li, H., Moberly, A., Badea, T.C., Duncan, I.D., Son, Y.J., Scherer, S.S., Luo, W.: Modality-based organization of ascending somatosensory axons in the direct dorsal column pathway. J. Neurosci. 33(45), 17691–17709 (2013)

    Article  Google Scholar 

  49. Smith, K.J., Bennett, B.J.: Topographic and quantitative description of rat dorsal column fibres arising from the lumbar dorsal roots. J. Anat. 153, 203–215 (1987)

    Google Scholar 

  50. Mendell, L.M., Wall, P.D.: Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature. 206(4979), 97–99 (1965)

    Article  Google Scholar 

  51. Todd, A.J.: Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11(12), 823–836 (2010)

    Article  Google Scholar 

  52. Simone, D.A., Sorkin, L.S., Oh, U., Chung, J.M., Owens, C., LaMotte, R.H., Willis, W.D.: Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J. Neurophysiol. 66(1), 228–246 (1991)

    Article  Google Scholar 

  53. Grudt, T.J., Perl, E.R.: Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 540(1), 189–207 (2002)

    Article  Google Scholar 

  54. Todd, A.J.: Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol. Pain. 13, 1–19 (2017)

    Article  Google Scholar 

  55. Yasaka, T., Tiong, S.Y., Hughes, D.I., Riddell, J.S., Todd, A.J.: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain. 151(2), 475–488 (2010)

    Article  Google Scholar 

  56. Cui, L., Miao, X., Liang, L., Abdus-Saboor, I., Olson, W., Fleming, M.S., Ma, M., Tao, Y.X., Luo, W.: Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron. 91(5), 1137–1153 (2016)

    Article  Google Scholar 

  57. Duan, B., Cheng, L., Bourane, S., Britz, O., Padilla, C., Garcia-Campmany, L., Krashes, M., Knowlton, W., Velasquez, T., Ren, X., Ross, S.E., Lowell, B.B., Wang, Y., Goulding, M., Ma, Q.: Identification of spinal circuits transmitting and gating mechanical pain. Cell. 159(6), 1417–1432 (2014)

    Article  Google Scholar 

  58. Abraira, V.E., Kuehn, E.D., Chirila, A.M., Springel, M.W., Toliver, A.A., Zimmerman, A.L., Orefice, L.L., Boyle, K.A., Bai, L., Song, B.J., Bashista, K.A., O’Neill, T.G., Zhuo, J., Tsan, C., Hoynoski, J., Rutlin, M., Kus, L., Niederkofler, V., Watanabe, M., Dymecki, S.M., Nelson, S.B., Heintz, N., Hughes, D.I., Ginty, D.D.: The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell. 168, 1–16 (2017)

    Article  Google Scholar 

  59. Kramer, P.R., Strand, J., Stinson, C., Bellinger, L.L., Kinchington, P.R., Yee, M.B., Umorin, M., Peng, Y.B.: Role for the ventral posterior medial/posterior lateral thalamus and anterior cingulate cortex in affective/motivation pain induced by varicella zoster virus (in eng). Front. Integr. Neurosci. 11, 27–27 (2017)

    Article  Google Scholar 

  60. Polgár, E., Wright, L.L., Todd, A.J.: A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat (in eng). Brain Res. 1308(5), 58–67 (2010)

    Article  Google Scholar 

  61. Bushnell, M.C., Ceko, M., Low, L.A.: Cognitive and emotional control of pain and its disruption in chronic pain (in eng). Nat. Rev. Neurosci. 14(7), 502–511 (2013)

    Article  Google Scholar 

  62. Hudson, P.M., Lumb, B.M.: Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat. Brain Res. 733(1), 138–141 (1996)

    Article  Google Scholar 

  63. Atkinson, L., Sundaraj, S.R., Brooker, C., O’Callaghan, J., Teddy, P., Salmon, J., Semple, T., Majedi, P.M.: Recommendations for patient selection in spinal cord stimulation. J. Clin. Neurosci. 18(10), 1295–1302 (2011)

    Article  Google Scholar 

  64. Moffitt, M.A., Lee, D.C., Bradley, K.: Spinal cord stimulation: engineering approaches to clinical and physiological challenges. In: Implantable Neural Prostheses 1, pp. 155–194. Springer, New York (2009)

    Google Scholar 

  65. De Carolis, G., Paroli, M., Tollapi, L., Doust, M.W., Burgher, A.H., Yu, C., Yang, T., Morgan, D.M., Amirdelfan, K., Kapural, L., Sitzman, B.T., Bundschu, R., Vallejo, R., Benyamin, R.M., Yearwood, T.L., Gliner, B.E., Powell, A.A., Bradley, K.: Paresthesia-independence: an assessment of technical factors related to 10 kHz paresthesia-free spinal cord stimulation (in eng). Pain Physician. 20(4), 331–341 (2017)

    Google Scholar 

  66. Abstracts from the 10th World Congress of the International Neuromodulation Society: spine. Neuromodulation. 14(5), 444–484, 2011

    Google Scholar 

  67. Haider, N., Ligham, D., Quave, B., Harum, K.E., Garcia, E.A., Gilmore, C.A., Miller, N., Moore, G.A., Bains, A., Lechleiter, K., Jain, R.: Spinal cord stimulation (SCS) trial outcomes after conversion to a multiple waveform SCS system (in eng). Neuromodulation. 21(5), 504–507 (2018)

    Article  Google Scholar 

  68. Hegarty, D.: Spinal cord stimulation: the clinical application of new technology. Anesthesiol. Res. Pract. 2012, 5 (2012). Art. no. 375691

    Google Scholar 

  69. Miller, J.P., Eldabe, S., Buchser, E., Johanek, L.M., Guan, Y., Linderoth, B.: Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation. 19(4), 373–384 (2016)

    Article  Google Scholar 

  70. Zhang, T.C., Janik, J.J., Grill, W.M.: Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition (in eng). J. Neurophysiol. 112(3), 552–567 (2014)

    Article  Google Scholar 

  71. Zhang, T.C., Janik, J.J., Peters, R.V., Chen, G., Ji, R.R., Grill, W.M.: Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control. J. Neurophysiol. 114(1), 284–300 (2015)

    Article  Google Scholar 

  72. Wille, F., Breel, J.S., Bakker, E.W., Hollmann, M.W.: Altering conventional to high density spinal cord stimulation: an energy dose-response relationship in neuropathic pain therapy (in eng). Neuromodulation. 20(1), 71–80 (2017)

    Article  Google Scholar 

  73. Cassar, I.R., Titus, N.D., Grill, W.M.: An improved genetic algorithm for designing optimal temporal patterns of neural stimulation (in eng). J. Neural Eng. 14(6), 066013 (2017)

    Article  Google Scholar 

  74. Babu, R., Hazzard, M.A., Huang, K.T., Ugiliweneza, B., Patil, C.G., Boakye, M., Lad, S.P.: Outcomes of percutaneous and paddle lead implantation for spinal cord stimulation: a comparative analysis of complications, reoperation rates, and health-care costs. Neuromodulation. 16(5), 418–426 (2013)

    Article  Google Scholar 

  75. Howell, B., Lad, S.P., Grill, W.M.: Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One. 9(12), 1–25 (2014)

    Article  Google Scholar 

  76. Holsheimer, J., Buitenweg, J.R.: Review: bioelectrical mechanisms in spinal cord stimulation. Neuromodulation. 18(3), 161–170 (2015)

    Article  Google Scholar 

  77. Villavicencio, A.T., Leveque, J.C., Rubin, L., Bulsara, K., Gorecki, J.P.: Laminectomy versus percutaneous electrode placement for spinal cord stimulation. Neurosurgery. 46(2), 399–406 (2000)

    Article  Google Scholar 

  78. North, R.B., Kidd, D.H., Petrucci, L., Dorsi, M.J.: Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: part II–clinical outcomes. Neurosurgery. 57(5), 990–996 (2005)

    Article  Google Scholar 

  79. Eldabe, S., Buchser, E., Duarte, R.V.: Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med. 17(2), 325–336 (2016)

    Google Scholar 

  80. Gazelka, H.M., Freeman, E.D., Hooten, W.M., Eldrige, J.S., Hoelzer, B.C., Mauck, W.D., Moeschler, S.M., Pingree, M.J., Rho, R.H., Lamer, T.J.: Incidence of clinically significant percutaneous spinal cord stimulator lead migration. Neuromodulation. 18(2), 123–125 (2015)

    Article  Google Scholar 

  81. Moffitt, M., Peterson, D.K.L.: System and method for maintaining a distribution of currents in an electrode array using independent voltage sources. US 20100023070A1 (2011)

    Google Scholar 

  82. Barolat, G., Zeme, S., Ketcik, B.: Multifactorial analysis of epidural spinal cord stimulation. Stereotact. Funct. Neurosurg. 56(2), 77–103 (1991)

    Article  Google Scholar 

  83. Takazawa, T., Choudhury, P., Tong, C.K., Conway, C.M., Scherrer, G., Flood, P.D., Mukai, J., MacDermott, A.B.: Inhibition mediated by glycinergic and gabaergic receptors on excitatory neurons in mouse superficial dorsal horn is location-specific but modified by inflammation. J. Neurosci. 37(9), 2336–2348 (2017)

    Article  Google Scholar 

  84. Deer, T.R., Krames, E., Mekhail, N., Pope, J., Leong, M., Stanton-Hicks, M., Golovac, S., Kapural, L., Alo, K., Anderson, J., Foreman, R.D., Caraway, D., Narouze, S., Linderoth, B., Buvanendran, A., Feler, C., Poree, L., Lynch, P., McJunkin, T., Swing, T., Staats, P., Liem, L., Williams, K.: The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation. 17(6), 599–615 (2014)

    Article  Google Scholar 

  85. Ross, E., Abejon, D.: Improving patient experience with spinal cord stimulation: implications of position-related changes in neurostimulation (in eng). Neuromodulation. 17(Suppl 1), 36–41 (2014)

    Article  Google Scholar 

  86. Kallewaard, J.W., Koy, J., Rigoard, P., Abejon, D., Gatzinsky, K.: Adaptive spinal cord stimulation: the results from testing RestoreSensor usability and satisfaction (TRUST) survey. Presented at the The 10th World Congress of the International Neuromodulation Society, London, 2011

    Google Scholar 

  87. Russo, M., Brooker, C., Cousins, M.J., Taylor, N., Boesel, T., Sullivan, R., Holford, L., Hanson, E., Gmel, G.E., Shariati, N.H., Poree, L., Parker, J.: Sustained long-term outcomes with closed-loop spinal cord stimulation: 12-month results of the prospective, multicenter, open-label avalon study. Neurosurgery. 87, E485–E495 (2020)

    Article  Google Scholar 

  88. Mekhail, N.: Closed-loop neurostimulation: is it needed and does it improve outcomes? In: NANS Annual Meeting, Las Vegas, 2019

    Google Scholar 

  89. Mekhail, N., Levy, R.M., Deer, T.R., Kapural, L., Li, S., Amirdelfan, K., Hunter, C.W., Rosen, S.M., Costandi, S.J., Falowski, S.M., Burgher, A.H., Pope, J.E., Gilmore, C.A., Qureshi, F.A., Staats, P.S., Scowcroft, J., Carlson, J., Kim, C.K., Yang, M.I., Stauss, T., Poree, L., Brounstein, D., Gorman, R., Gmel, G.E., Hanson, E., Karantonis, D.M., Khurram, A., Kiefer, D., Leitner, A., Mugan, D., Obradovic, M., Parker, J., Single, P., Soliday, N.: Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 19(2), 123–134 (2020)

    Article  Google Scholar 

  90. Jensen, M.P., Brownstone, R.M.: Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur. J. Pain. 23(4), 652–659 (2019)

    Article  Google Scholar 

  91. Struijk, J.J., Holsheimer, J., Boom, H.B.K.: Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans. Biomed. Eng. 40(7), 632–639 (1993)

    Article  Google Scholar 

  92. Pelot, N.A., Thio, B.J., Grill, W.M.: Modeling current sources for neural stimulation in COMSOL. Front. Comput. Neurosci. 12, 40 (2018)

    Article  Google Scholar 

  93. McIntyre, C.C., Grill, W.M.: Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88, 1592–1604 (2002)

    Article  Google Scholar 

  94. Chakraborty, D., Truong, D.Q., Bikson, M., Kaphzan, H.: Neuromodulation of axon terminals. Cereb. Cortex. 28(8), 2786–2794 (2018)

    Article  Google Scholar 

  95. Gustafsson, B., Jankowska, E.: Direct and indirect activation of nerve cells by electrical pulses appplied extracellularly. J. Physiol. 258, 33–61 (1976)

    Article  Google Scholar 

  96. Amir, R., Michaelis, M., Devor, M.: Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J. Neurosci. 19(19), 8589–8596 (1999)

    Article  Google Scholar 

  97. Koopmeiners, A.S., Mueller, S., Kramer, J., Hogan, Q.H.: Effect of electrical field stimulation on dorsal root ganglion neuronal function. Neuromodulation. 16, 304–311 (2013)

    Article  Google Scholar 

  98. Deer, T., Masone, R.J.: Selection of spinal cord stimulation candidates for the treatment of chronic pain. Pain Med. 9(S1), S82–S92 (2008)

    Article  Google Scholar 

  99. Deer, T.R., Jain, S., Hunter, C., Chakravarthy, K.: Neurostimulation for intractable chronic pain. Brain Sci. 9(2) (2019)

    Google Scholar 

  100. Pope, J.E., Deer, T.R., Falowski, S., Provenzano, D., Hanes, M., Hayek, S.M., Amrani, J., Carlson, J., Skaribas, I., Parchuri, K., McRoberts, W.P., Bolash, R., Haider, N., Hamza, M., Amirdelfan, K., Graham, S., Hunter, C., Lee, E., Li, S., Yang, M., Campos, L., Costandi, S., Levy, R., Mekhail, N.: Multicenter retrospective study of neurostimulation with exit of therapy by explant. Neuromodulation. 20(6), 543–552 (2017)

    Article  Google Scholar 

  101. Wall, P.D., Gutnick, M.: Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp. Neurol. 43(3), 580–593 (1974)

    Article  Google Scholar 

  102. Sdrulla, A.D., Xu, Q., He, S.Q., Tiwari, V., Yang, F., Zhang, C., Shu, B., Shechter, R., Raja, S.N., Wang, Y., Dong, X., Guan, Y.: Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain. 156(6), 1008–1017 (2015)

    Article  Google Scholar 

  103. Weiner, R., Reed, K.L.: Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation. 2(3), 217–221 (1999)

    Article  Google Scholar 

  104. Rattay, F., Aberham, M.: Modeling axon membranes for functional electrical stimulation. IEEE Trans. Biomed. Eng. 40(12), 1201–1209 (1993)

    Article  Google Scholar 

  105. Rattay, F.: The basic mechanism for the electrical stimulation of the nervous system. Neuroscience. 89(2), 335–346 (1999)

    Article  Google Scholar 

  106. Aberra, A., Wang, B., Grill, W.M., Peterchev, A.V.: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. bioRxiv. (2018)

    Google Scholar 

  107. Wang, B., Aberra, A.S., Grill, W.M., Peterchev, A.V.: Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields. J. Neural Eng. 15(2), 026003 (2018)

    Article  Google Scholar 

  108. Clark, B., Häusser, M.: Neural coding: hybrid analog and digital signalling in axons. Curr. Biol. 16(15), R585–R588 (2006)

    Article  Google Scholar 

  109. Dubner, R., Kenshalo Jr., D.R., Maixner, W., Oliveras, J.-L.: The correlation of monkey medullary dorsal horn neuronal activity and the perceived intensity of noxious heat stimuli. J. Neurophysiol. 62(2), 450–456 (1989)

    Article  Google Scholar 

  110. O’Neill, J., Sikandar, S., McMahon, S.B., Dickenson, A.H.: Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models. J. Physiol. 593(17), 4029–4042 (2015)

    Article  Google Scholar 

  111. Guan, Y.: Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr. Pain Headache Rep. 16(3), 217–225 (2012)

    Article  Google Scholar 

  112. Linderoth, B., Foreman, R.D., Meyerson, B.A.: Mechanisms of action of spinal cord stimulation. In: Textbook of Stereotactic and Functional Neurosurgery, pp. 2331–2348. McGrawHill, New York (2009)

    Chapter  Google Scholar 

  113. Beck, S., Hallett, M.: Surround inhibition in the motor system. Exp. Brain Res. 210(2), 165–172 (2011)

    Article  Google Scholar 

  114. Blakemore, C., Carpenter, R.H.S., Georgeson, M.A.: Lateral inhibition between orientation detectors in the human visual system. Nature. 228, 37–39 (1970)

    Article  Google Scholar 

  115. Hillman, P., Wall, P.D.: Inhibitory and excitatory factors influencing the receptive fields of lamina 5 spinal cord cells. Exp. Brain Res. 9(4), 284–306 (1969)

    Article  Google Scholar 

  116. Kato, G., Kosugi, M., Mizuno, M., Strassman, A.M.: Separate inhibitory and excitatory components underlying receptive field organization in superficial medullary dorsal horn neurons. J. Neurosci. 31(47), 17300–17305 (2011)

    Article  Google Scholar 

  117. Luz, L.L., Szucs, P., Pinho, R., Safronov, B.V.: Monosynaptic excitatory inputs to spinal lamina I anterolateral-tract-projecting neurons from neighbouring lamina I neurons (in eng). J. Physiol. 588(Pt 22), 4489–4505 (2010)

    Article  Google Scholar 

  118. Menétrey, D., Giesler, G.J., Besson, J.M.: An analysis of response properties of spinal cord dorsal horn neurones to nonnoxious and noxious stimuli in the spinal rat. Exp. Brain Res. 27, 15–33 (1977)

    Article  Google Scholar 

  119. Kato, G., Kawasaki, Y., Koga, K., Uta, D., Kosugi, M., Yasaka, T., Yoshimura, M., Ji, R.R., Strassman, A.M.: Organization of intralaminar and translaminar neuronal connectivity in the superficial spinal dorsal horn. J. Neurosci. 29(16), 5088–5099 (2009)

    Article  Google Scholar 

  120. Hylden, J.L.K., Nahim, R.L., Traub, R.J., Dubner, R.: Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain. 37, 229–243 (1989)

    Article  Google Scholar 

  121. Bains, A., McDonald, M., Lin, S.: Longitudinal study of pain area changes and paresthesia coverage in neuropathic pain patients. In: 2018 World Congress on Regional Anesthsia & Pain Medicine, New York, 2015

    Google Scholar 

  122. Ruscheweyh, R., Sandkühler, J.: Epileptiform activity in rat spinal dorsal horn in vitro has common features with neuropathic pain. Pain. 105(1), 327–338 (2003)

    Article  Google Scholar 

  123. Schoffnegger, D., Ruscheweyh, R., Sandkuhler, J.: Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain. 135(3), 300–310 (2008)

    Article  Google Scholar 

  124. Sandkuhler, J.: The role of inhibition in the generation and amplification of pain. In: Castro-Lopes, J. (ed.) Current Topics in Pain: 12th World Congress on Pain, 1st edn. IASP Press, Seattle (2009)

    Google Scholar 

  125. Lu, Y., Dong, H., Gao, Y., Gong, Y., Ren, Y., Gu, N., Zhou, S., Xia, N., Sun, Y.Y., Ji, R.R., Xiong, L.: A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest. 123(9), 4050–4062 (2013)

    Article  Google Scholar 

  126. Miraucourt, L.S., Dallel, R., Voisin, D.L.: Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS One. 2(11), e1116 (2007)

    Article  Google Scholar 

  127. Petitjean, H., Pawlowski, S.A., Fraine, S.L., Sharif, B., Hamad, D., Fatima, T., Berg, J., Brown, C.M., Jan, L.Y., Ribeiro-da-Silva, A., Braz, J.M., Basbaum, A.I., Sharif-Naeini, R.: Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep. 13(6), 1246–1257 (2015)

    Article  Google Scholar 

  128. Malmberg, A.B., Chen, C., Susumu, T., Basbaum, A.I.: Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science. 278, 279–283 (1997)

    Article  Google Scholar 

  129. Guo, D., Hu, J.: Spinal presynaptic inhibition in pain control. Neuroscience. 283, 95–106 (2014)

    Article  Google Scholar 

  130. Takkala, P., Zhu, Y., Prescott, S.A.: Combined changes in chloride regulation and neuronal excitability enable primary afferent depolarization to elicit spiking without compromising its inhibitory effects. PLoS Comput. Biol. 12(11), e1005215 (2016)

    Article  Google Scholar 

  131. Leitner, J., Westerholz, S., Heinke, B., Forsthuber, L., Wunderbaldinger, G., Jager, T., Gruber-Schoffnegger, D., Braun, K., Sandkuhler, J.: Impaired excitatory drive to spinal GABAergic neurons of neuropathic mice. PLoS One. 8(8), e73370 (2013)

    Article  Google Scholar 

  132. Moore, K.A., Kohno, T., Karchewski, L.A., Scholz, J., Baba, H., Woolf, C.J.: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22(15), 6724–6731 (2002)

    Article  Google Scholar 

  133. Coull, J.A.M., Boudreau, D., Bachand, K., Prescott, S.A., Nault, F., Sík, A., De Koninck, P., De Koninck, Y.: Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 424, 938–942 (2003)

    Article  Google Scholar 

  134. Imlach, W.L., Bhola, R.F., Mohammadi, S.A., Christie, M.J.: Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci. Rep. 6, 37104 (2016)

    Article  Google Scholar 

  135. Lavertu, G., Côté, S.L., De Koninck, Y.: Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model. Brain. 137(3), 724–738 (2014)

    Article  Google Scholar 

  136. Ratte, S., Prescott, S.A.: Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy. Curr. Opin. Neurobiol. 36, 31–37 (2016)

    Article  Google Scholar 

  137. Holsheimer, J., Barolat, G., Struijk, J.J., He, J.: Significance of the spinal cord position in spinal cord stimulation. In: Advances in Stereotactic and Functional Neurosurgery 11, pp. 119–124. Springer Vienna, Vienna (1995)

    Chapter  Google Scholar 

  138. Holsheimer, J., Wesselink, W.A.: Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med. Biol. Eng. Comput. 35(5), 493–497 (1997)

    Article  Google Scholar 

  139. Holsheimer, J.: Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 5(1), 25–31 (2002)

    Article  Google Scholar 

  140. Oakley, J.C., Espinosa, F., Bothe, H., McKean, J., Allen, P., Burchiel, K.J., Quartey, G., Spincemaille, G., Nuttin, B., Gielen, F., King, G., Holsheimer, J.: Transverse tripolar spinal cord stimulatino: results of an international multicenter study. Neuromodulation. 9(3), 192–203 (2006)

    Article  Google Scholar 

  141. Slavin, K.F., Burchiel, K.J., Anderson, V.C., Cooke, B.: Efficacy of transverse tripolar stimulation for relief of chronic low back pain. Stereotact. Funct. Neurosurg. 73(1-4), 126–130 (1999)

    Article  Google Scholar 

  142. Radwani, H., Lopez-Gonzalez, M.J., Cattaert, D., Roca-Lapirot, O., Dobremez, E., Bouali-Benazzouz, R., Eiriksdottir, E., Langel, U., Favereaux, A., Errami, M., Landry, M., Fossat, P.: Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain. J. Physiol. 594(22), 6607–6626 (2016)

    Article  Google Scholar 

  143. Li, J., Simone, D.A., Larson, A.A.: Windup leads to characteristics of central sensitization. Pain. 79(1), 75–82 (1999)

    Article  Google Scholar 

  144. Prescott, S.A., De Koninck, Y.: Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization (in eng). J. Neurosci. 25(19), 4743–4754 (2005)

    Article  Google Scholar 

  145. Prescott, S.A., Sejnowski, T.J., De Koninck, Y.: Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain (in eng). Mol. Pain. 2, 32 (2006)

    Article  Google Scholar 

  146. Crosby, N.D., Weisshaar, C.L., Smith, J.R., Zeeman, M.E., Goodman-Keiser, M.D., Winkelstein, B.A.: Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy (in eng). I.E.E.E. Trans. Biomed. Eng. 62(6), 1604–1613 (2015)

    Google Scholar 

  147. Cregg, R., Momin, A., Rugiero, F., Wood, J.N., Zhao, J.: Pain channelopathies (in eng). J. Physiol. 588(Pt 11), 1897–1904 (2010)

    Article  Google Scholar 

  148. Balachandar, A., Prescott, S.A.: Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons. J. Physiol. 596(9), 1681–1697 (2018)

    Article  Google Scholar 

  149. Ruscheweyh, R., Sandkühler, J.: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neuronesin vitro. J. Physiol. 541(1), 231–244 (2002)

    Article  Google Scholar 

  150. Melnick, I.V., Santos, S.F., Safronov, B.V.: Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat. J. Physiol. 559(2), 383–395 (2004)

    Article  Google Scholar 

  151. Melnick, I.V., Santos, S.F., Szokol, K., Szucs, P., Safronov, B.V.: Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J. Neurophysiol. 91(2), 646–655 (2004)

    Article  Google Scholar 

  152. Bellinger, S.C., Miyazawa, G., Steinmetz, P.N.: Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study (in eng). J. Neural Eng. 5(3), 263–274 (2008)

    Article  Google Scholar 

  153. Aguiar, P., Sousa, M., Lima, D.: NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. J. Neurophysiol. 104(2), 1155–1166 (2010)

    Article  Google Scholar 

  154. Parker, J.L., Karantonis, D.M., Single, P.S., Obradovic, M., Cousins, M.J.: Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain. 153(3), 593–601 (2012)

    Article  Google Scholar 

  155. Parker, J.L., Karantonis, D.M., Single, P.S., Obradovic, M., Laird, J., Gorman, R.B., Ladd, L.A., Cousins, M.J.: Electrically evoked compound action potentials recorded from the sheep spinal cord. Neuromodulation. 16(4), 295–303 (2013)

    Article  Google Scholar 

  156. Qin, C., Lehew, R.T., Khan, K.A., Wienecke, G.M., Foreman, R.D.: Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats. Neurosci. Res. 58(1), 58–66 (2007)

    Article  Google Scholar 

  157. Cui, J.-G., O’Connot, W.T., Understedt, U., Linderoth, B., Meyerson, B.A.: Spinal cord stimulation attenuates augmented dorsal horn release of excitatoryamino acids in mononeuropathy via a GABAergic mechanism. Pain. 73, 87–95 (1997)

    Article  Google Scholar 

  158. Ultenius, C., Song, Z., Lin, P., Meyerson, B.A., Linderoth, B.: Spinal GABAergic mechanisms in the effects of spinal cord stimulation in a rodent model of neuropathic pain: is GABA synthesis involved? Neuromodulation. 16(2), 114–120 (2013)

    Article  Google Scholar 

  159. Lu, Y., Perl, E.R.: Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J. Physiol. 582(1), 127–136 (2007)

    Article  Google Scholar 

  160. Barchini, J., Tchachaghian, S., Shamaa, F., Jabbur, S.J., Meyerson, B.A., Song, Z., Linderoth, B., Saade, N.E.: Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience. 215, 196–208 (2012)

    Article  Google Scholar 

  161. Saade, N.E., Barchini, J., Tchachaghian, S., Chamaa, F., Jabbur, S.J., Song, Z., Meyerson, B.A., Linderoth, B.: The role of the dorsolateral funiculi in the pain relieving effect of spinal cord stimulation: a study in a rat model of neuropathic pain. Exp. Brain Res. 233(4), 1041–1052 (2015)

    Article  Google Scholar 

  162. Yakhnitsa, V., Linderoth, B., Myerson, B.: Spinal cord stimulation attenuates dorsal horn neuronal hyperexcitability in a rat model of mononeuropathy. Pain. 79, 223–233 (1999)

    Article  Google Scholar 

  163. Schuh-Hofer, S., Fischer, J., Unterberg, A., Treede, R.-D., Ahmadi, R.: Spinal cord stimulation modulates descending pain inhibition and temporal summation of pricking pain in patients with neuropathic pain. Acta Neurochir. 160(12), 2509–2519 (2018)

    Article  Google Scholar 

  164. Demartini, L., Terranova, G., Innamorato, M.A., Dario, A., Sofia, M., Angelini, C., Duse, G., Costantini, A., Leoni, M.L.G.: Comparison of tonic vs. burst spinal cord stimulation during trial period (in eng). Neuromodulation. 22(3), 327–332 (2019)

    Article  Google Scholar 

  165. De Ridder, D., Vanneste, S., Plazier, M., van der Loo, E., Menovsky, T.: Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 66(5), 986–990 (2010)

    Article  Google Scholar 

  166. De Ridder, D., Vanneste, S.: Burst and tonic spinal cord stimulation: different and common brain mechanisms (in eng). Neuromodulation. 19(1), 47–59 (2016)

    Article  Google Scholar 

  167. Shechter, R., Yang, F., Xu, Q., Cheong, Y.-K., He, S.-Q., Sdrulla, A., Carteret, A.F., Wacnik, P.W., Dong, X., Meyer, R.A., Raja, S.N., Guan, Y.: Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology. 119(2), 422–432 (2013)

    Article  Google Scholar 

  168. Muhammad, S., Roeske, S., Chaudhry, S.R., Kinfe, T.M.: Burst or high-frequency (10 kHz) spinal cord stimulation in failed back surgery syndrome patients with predominant back pain: one year comparative data (in eng). Neuromodulation. 20(7), 661–667 (2017)

    Article  Google Scholar 

  169. Chakravarthy, K., Richter, H., Christo, P.J., Williams, K., Guan, Y.: Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation. 21(1), 10–18 (2018)

    Article  Google Scholar 

  170. Van Den Honert, C., Mortimer, J.T.: A technique for collision block of peripheral nerve: frequency dependence. IEEE Trans. Biomed. Eng. 28(5), 379–382 (1981)

    Article  Google Scholar 

  171. Kilgore, K.L., Bhadra, N.: Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42, 394–406 (2004)

    Article  Google Scholar 

  172. Kilgore, K.L., Bhadra, N.: Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation. 17(3), 242–254 (2014)

    Article  Google Scholar 

  173. Lempka, S.F., McIntyre, C.C., Kilgore, K.L., Machado, A.G.: Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management (in eng). Anesthesiology. 122(6), 1362–1376 (2015)

    Article  Google Scholar 

  174. Arle, J.E., Mei, L., Carlson, K.W., Shils, J.L.: High-frequency stimulation of dorsal column axons: potential underlying mechanism of paresthesia-free neuropathic pain relief (in eng). Neuromodulation. 19(4), 385–397 (2016)

    Article  Google Scholar 

  175. Pelot, N.A., Behrend, C.E., Grill, W.M.: On the parameters used in finite element modeling of compound peripheral nerves (in eng). J. Neural Eng. 16(1), 016007 (2019)

    Article  Google Scholar 

  176. Sivanesan, E., Maher, D.P., Raja, S.N., Linderoth, B., Guan, Y.: Supraspinal mechanisms of spinal cord stimulation for modulation of pain: five decades of research and prospects for the future. Anesthesiology. 130(4), 651–665 (2019)

    Article  Google Scholar 

  177. Puskar, Z., Polgár, E., Todd, A.J.: A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord (in eng). Neuroscience. 102(1), 167–176 (2001)

    Article  Google Scholar 

  178. Finch, P., Price, L., Drummond, P.: High-frequency (10 kHz) electrical stimulation of peripheral nerves for treating chronic pain: a double-blind trial of presence vs absence of stimulation (in eng). Neuromodulation. (2018)

    Google Scholar 

  179. Zannou, A.L., Khadka, N., Truong, D.Q., Zhang, T., Esteller, R., Hershey, B., Bikson, M.: Temperature increases by kilohertz frequency spinal cord stimulation (in eng). Brain Stimul. 12(1), 62–72 (2019)

    Article  Google Scholar 

  180. Vallejo, R., Bradley, K., Kapural, L.: Spinal cord stimulation in chronic pain: mode of action (in eng). Spine (Phila Pa 1976). 42(Suppl 14), S53–S60 (2017)

    Article  Google Scholar 

  181. North, R.B., Ewend, M.G., Lawton, M.T., Piantadosi, S.: Spinal cord stimulation for chronic, intractable pain: superiority of “multi-channel” devices. Pain. 44(2), 119–130 (1991)

    Article  Google Scholar 

  182. Bocci, T., De Carolis, G., Paroli, M., Barloscio, D., Parenti, L., Tollapi, L., Valeriani, M., Sartucci, F.: Neurophysiological comparison among tonic, high frequency, and burst spinal cord stimulation: novel insights into spinal and brain mechanisms of action (in eng). Neuromodulation. 21(5), 480–488 (2018)

    Article  Google Scholar 

  183. Tang, R., Martinez, M., Goodman-Keiser, M., Farber, J.P., Qin, C., Foreman, R.D.: Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model (in eng). Neuromodulation. 17(2), 143–151 (2014)

    Article  Google Scholar 

  184. Kriek, N., Groeneweg, J.G., Stronks, D.L., de Ridder, D., Huygen, F.J.: Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial (in eng). Eur. J. Pain. 21(3), 507–519 (2017)

    Article  Google Scholar 

  185. Törk, I.: Anatomy of the serotonergic system (in eng). Ann. N. Y. Acad. Sci. 600, 9–34; discussion 34–35 (1990)

    Article  Google Scholar 

  186. Aicher, S.A., Hermes, S.M., Whittier, K.L., Hegarty, D.M.: Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct (in eng). J. Chem. Neuroanat. 43(2), 103–111 (2012)

    Article  Google Scholar 

  187. Bruinstroop, E., Cano, G., Vanderhorst, V.G.J.M., Cavalcante, J.C., Wirth, J., Sena-Esteves, M., Saper, C.B.: Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats (in eng). J. Comp. Neurol. 520(9), 1985–2001 (2012)

    Article  Google Scholar 

  188. Millan, M.J.: Descending control of pain (in eng). Prog. Neurobiol. 66(6), 355–474 (2002)

    Article  Google Scholar 

  189. Ridet, J.L., Rajaofetra, N., Teilhac, J.R., Geffard, M., Privat, A.: Evidence for nonsynaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions (in eng). Neuroscience. 52(1), 143–157 (1993)

    Article  Google Scholar 

  190. Song, Z., Ansah, O.B., Meyerson, B.A., Pertovaara, A., Linderoth, B.: The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain (in eng). Neuroscience. 247, 134–144 (2013)

    Article  Google Scholar 

  191. Song, Z., Ansah, O.B., Meyerson, B.A., Pertovaara, A., Linderoth, B.: Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus (in eng). Neuroscience. 253, 426–434 (2013)

    Article  Google Scholar 

  192. North, R.B., Ewend, M.G., Lawton, M.T., Kidd, D.H., Piantadosi, S.: Failed back surgery syndrome: 5-year follow-up after spinal cord stimulator implantation. Neurosurgery. 28(5), 692–699 (1991)

    Article  Google Scholar 

  193. North, R.B., Kidd, D.H., Piantadosi, S.: Spinal cord stimulation versus reoperation for failed back surgery syndrome: a prospective, randomized study design. Acta Neurochir. 64, 106–108 (1995)

    Article  Google Scholar 

  194. Manca, A., Kumar, K., Taylor, R.S., Jacques, L., Eldabe, S., Meglio, M., Molet, J., Thomson, S., O’Callaghan, J., Eisenberg, E., Milbouw, G., Buchser, E., Fortini, G., Richardson, J., Taylor, R.J., Goeree, R., Sculpher, M.J.: Quality of life, resource consumption and costs of spinal cord stimulation versus conventional medical management in neuropathic pain patients with failed back surgery syndrome (PROCESS trial). Eur. J. Pain. 12(8), 1047–1158 (2008)

    Article  Google Scholar 

  195. Son, B.-C., Kim, D.-R., Lee, S.-W., Chough, C.-K.: Factors associated with the success of trial spinal cord stimulation in patients with chronic pain from failed back surgery syndrome (in eng). J. Korean Neurosurg. Soc. 54(6), 501–506 (2013)

    Article  Google Scholar 

  196. Sun, L., Tai, L., Qiu, Q., Mitchell, R., Fleetwood-Walker, S., Joosten, E.A., Cheung, C.W.: Endocannabinoid activation of CB1 receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation. Eur. J. Pain. 21(5), 804–814 (2017)

    Article  Google Scholar 

  197. Tilley, D.M., Vallejo, R., Kelley, C.A., Benyamin, R., Cedeno, D.L.: A continuous spinal cord stimulation model attenuates pain-related behavior in vivo following induction of a peripheral nerve injury. Neuromodulation. 18(3), 171–176 (2015)

    Article  Google Scholar 

  198. Decosterd, I., Woolf, C.J.: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 87, 149–158 (2000)

    Article  Google Scholar 

  199. Tal, M., Eliav, E.: Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain. 64(3), 511–518 (1996)

    Article  Google Scholar 

  200. Jensen, T.S., Finnerup, N.B.: Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13(9), 924–935 (2014)

    Article  Google Scholar 

  201. Foreman, R.D., Linderoth, B.: Chapter five – Neural mechanisms of spinal cord stimulation. In: Clement, H., Elena, M. (eds.) International Review of Neurobiology, vol. 107, pp. 87–119. Academic (2012)

    Google Scholar 

  202. Hansson, P.: Difficulties in stratifying neuropathic pain by mechanisms. Eur. J. Pain. 7(4), 353–357 (2003)

    Article  Google Scholar 

  203. Bradman, M.J., Ferrini, F., Salio, C., Merighi, A.: Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: Towards a rational method. J. Neurosci. Methods. 255, 92–103 (2015)

    Article  Google Scholar 

  204. Baba, H., Ji, R.R., Kohno, T., Moore, K.A., Ataka, T., Wakai, A., Okamoto, M., Woolf, C.J.: Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol. Cell. Neurosci. 24(3), 818–830 (2003)

    Article  Google Scholar 

  205. Fan, R.J., Shyu, B.C., Hsiao, S.: Analysis of nocifensive behavior induced in rats by C02 laser pulse stimulation. Physiol. Behav. 57(6), 1131–1137 (1995)

    Article  Google Scholar 

  206. Sufka, K.J.: Conditioned place preference paradigm: a novel approach for analgesic drug assessment against chronic pain. Pain. 58(3), 355–366 (1994)

    Article  Google Scholar 

  207. Martucci, K.T., Mackey, S.C.: Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology. 128(6), 1241–1254 (2018)

    Article  Google Scholar 

  208. Ceko, M., Bushnell, M.C., Fitzcharles, M.A., Schweinhardt, P.: Fibromyalgia interacts with age to change the brain. Neuroimage Clin. 3, 249–260 (2013)

    Article  Google Scholar 

  209. Zatorre, R.J., Fields, R.D., Johansen-Berg, H.: Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15(4), 528–536 (2012)

    Article  Google Scholar 

  210. Bentley, L.D., Duarte, R.V., Furlong, P.L., Ashford, R.L., Raphael, J.H.: Brain activity modifications following spinal cord stimulation for chronic neuropathic pain: A systematic review. Eur. J. Pain. 20(4), 499–511 (2016)

    Article  Google Scholar 

  211. Koyama, S., Xia, J., Leblanc, B.W., Gu, J.W., Saab, C.Y.: Sub-paresthesia spinal cord stimulation reverses thermal hyperalgesia and modulates low frequency EEG in a rat model of neuropathic pain. Sci. Rep. 8(1), 7181 (2018)

    Article  Google Scholar 

  212. Deogaonkar, M., Sharma, M., Oluigbo, C., Nielson, D.M., Yang, X., Vera-Portocarrero, L., Molnar, G.F., Abduljalil, A., Sederberg, P.B., Knopp, M., Rezai, A.R.: Spinal Cord Stimulation (SCS) and Functional Magnetic Resonance Imaging (fMRI): modulation of cortical connectivity with therapeutic SCS. Neuromodulation. 19(2), 142–153 (2016)

    Article  Google Scholar 

  213. Chahine, M., O’Leary, M.E.: Regulatory role of voltage-gated Na channel β subunits in sensory neurons (in eng). Front. Pharmacol. 2, 70–70 (2011)

    Article  Google Scholar 

  214. Traub, R.D., Wong, R.K., Miles, R., Michelson, H.: A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66(2), 635–650 (1991)

    Article  Google Scholar 

  215. Risson, E.G., Serpa, A.P., Berger, J.J., Koerbel, R.F.H., Koerbel, A.: Spinal cord stimulation in the treatment of complex regional pain syndrome type 1: Is trial truly required? Clin. Neurol. Neurosurg. 171, 156–162 (2018)

    Article  Google Scholar 

  216. Simopoulos, T., Sharma, S., Aner, M., Gill, J.S.: A temporary vs. permanent anchored percutaneous lead trial of spinal cord stimulation: a comparison of patient outcomes and adverse events. Neuromodulation. 21(5), 508–512 (2018)

    Article  Google Scholar 

  217. Oakley, J.C., Krames, E.S., Stamatos, J., Foster, A.M.: Successful long-term outcomes of spinal cord stimulation despite limited pain relief during temporary trialing. Neuromodulation. 11(1), 66–53 (2008)

    Article  Google Scholar 

  218. Eldabe, S.: Trialing and SCS: does trialing improve outcomes. In: NANS Annual Meeting, Las Vegas, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Titus, N.D., Gilbert, J.E., Grill, W.M. (2021). Biophysics and Mechanisms of Spinal Cord Stimulation for Chronic Pain. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_99-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_99-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics