Skip to main content

Effects of Ozone on Forests

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Ground-level ozone (O3) concentrations have considerably elevated since the pre-industrial period and are projected to remain at elevated levels for many decades to come, thus presenting a growing threat to forest ecosystems. In this chapter, a brief historical overview of the research field of O3 effects on vegetation is presented, centered around the advancement of the O3 exposure facilities over time. The widespread occurrence of visible foliar injuries caused by ambient and elevated O3 exposures in diverse types of vegetation in O3-exposure experiments as well as real-world natural ecosystems is summarized. So are the detrimental effects of elevated O3 on the photosynthesis, growth, and biomass production of plants of forest species. The concept of O3 threshold (critical levels) for setting standards to protect forests against O3 deleterious effects is also introduced, with a particular focus on AOT40 (accumulated O3 exposure over a threshold of 40 ppb), the most used O3-exposure metric in the regulatory and scientific worlds. Then, the effects of O3 on plant-plant, plant-insect, and plant-microbe interactions are discussed. Briefly, O3 alters plant-plant interactions by changing plant competitiveness due to the different degrees of susceptibility among plants. It also changes plant-insect interactions through changes in leaf biochemical and physical traits as well as quantitative and qualitative modification of the emission of volatile organic compounds (VOCs). Finally, O3 affects plant-microbe interactions through changes in the quality and the amount of plant litter, soil fertility, nutrient cycling, decomposition, root exudates, and chemical composition, production, and turnover of roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sicard P (2021) Ground-level ozone over time: an observation-based global overview. Curr Opin Environ Sci Health 19:100226. https://doi.org/10.1016/j.coesh.2020.100226

    Article  Google Scholar 

  2. Akimoto H, Mori Y, Sasaki K et al (2015) Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: causes of temporal and spatial variation. Atmos Environ 102:302–310. https://doi.org/10.1016/j.atmosenv.2014.12.001

    Article  Google Scholar 

  3. Querol X, Massagué J, Alastuey A et al (2021) Lessons from the COVID-19 air pollution decrease in Spain: now what? Sci Total Environ 779:146380–146380. https://doi.org/10.1016/j.scitotenv.2021.146380

    Article  Google Scholar 

  4. Agathokleous E, Feng Z, Oksanen E, et al (2020) Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci Adv 6:eabc1176. https://doi.org/10.1126/sciadv.abc1176

  5. Agathokleous E, Saitanis CJ, Koike T (2015) Tropospheric O3, the nightmare of wild plants: a review study. J Agric Meteorol 71:142–152. https://doi.org/10.2480/agrmet.d-14-00008

    Article  Google Scholar 

  6. Bergmann E, Bender J, Weigel HJ (2017) Impact of tropospheric ozone on terrestrial biodiversity: a literature analysis to identify ozone sensitive taxa. J Appl Bot Food Qual 90:83–105. https://doi.org/10.5073/jabfq.2017.090.012

    Article  Google Scholar 

  7. Burkey KO, Agathokleous E, Saitanis CJ et al (2020) Ozone effects on vegetation: a walk from cells to ecosystems. In: Hung Y-T, Wang LK, Shammas NK (eds) Handbook of environmental and waste management volume 3, acid rain and greenhouse gas pollution control. World Scientific Publishing Co, Singapore, p 1055

    Google Scholar 

  8. Middleton JT, Crafts AS, Brewer RF, Taylor OC (1956) Plant damage by air pollution. California Agriculture, June, pp 9–12

    Google Scholar 

  9. Middleton JT, Kendrick JB Jr, Darley EF (1953) Olefinic peroxide injury to bean as influenced by age, variety, chemical additions, and toxicant dosage. Phytopathology 43:588

    Google Scholar 

  10. Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution on plants. J Environ Qual 2:365–368. https://doi.org/10.2134/jeq1973.00472425000200030014x

    Article  Google Scholar 

  11. Karnosky DF, Werner H, Holopainen T et al (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190. https://doi.org/10.1055/s-2006-955915

    Article  Google Scholar 

  12. Kolb TE, Matyssek R, Kol TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–393. https://doi.org/10.1016/S0269-7491(01)00228-7

    Article  Google Scholar 

  13. Agathokleous E, Kitao M, Wang X et al (2021) Ethylenediurea (EDU) effects on Japanese larch: an one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. J For Res 32:2047–2057. https://doi.org/10.1007/s11676-020-01223-6

    Article  Google Scholar 

  14. Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506. https://doi.org/10.1016/j.envpol.2006.08.043

    Article  Google Scholar 

  15. Fuhrer J, Val Martin M, Mills G et al (2016) Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol 6:8785–8799. https://doi.org/10.1002/ece3.2568

    Article  Google Scholar 

  16. Sicard P, de Marco A, Dalstein-Richier L et al (2016) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ 541:729–741. https://doi.org/10.1016/j.scitotenv.2015.09.113

    Article  Google Scholar 

  17. Costonis AC, Sinclair WA (1969) Ozone injury to Pinus strobus. J Air Pollut Control Assoc 19:867–872. https://doi.org/10.1080/00022470.1969.10469351

    Article  Google Scholar 

  18. Feng Z, Sun J, Wan W et al (2014) Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ Pollut 193:296–301. https://doi.org/10.1016/j.envpol.2014.06.004

    Article  Google Scholar 

  19. Temple PJ, Bytnerowicz A, Fenn ME, Poth MA (2005) Air pollution impacts in the mixed conifer forests of southern California. In: Kus BE, Beyers JL (eds) Planning for biodiversity: bringing research and management together. Gen. Tech. Rep. PSW-GTR-195. In: Kus BE, Beyers JL, Technical coordinators. Planning for biodiversity: bringing research and management together. Gen. Tech. Rep. PSW-GT. Albany, pp 145–164

    Google Scholar 

  20. Sicard P, de Marco A, Carrari E et al (2020) Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests. J For Res 31:1509–1519. https://doi.org/10.1007/s11676-020-01191-x

    Article  Google Scholar 

  21. Sicard P, Hoshika Y, Carrari E et al (2021) Testing visible ozone injury within a light exposed sampling site as a proxy for ozone risk assessment for European forests. J For Res 32:1351–1359. https://doi.org/10.1007/S11676-021-01327-7

    Article  Google Scholar 

  22. Harmens H, Mills G, Hayes F et al (2015) Twenty eight years of ICP vegetation: an overview of its activities. Annali di Botanica 5:31–43. https://doi.org/10.4462/annbotrm-13064

    Article  Google Scholar 

  23. Paoletti E (2006) Impact of ozone on mediterranean forests: a review. Environ Pollut 144:463–474. https://doi.org/10.1016/j.envpol.2005.12.051

    Article  Google Scholar 

  24. Bussotti F, Ferretti M (2009) Visible injury, crown condition, and growth responses of selected Italian forests in relation to ozone exposure. Environ Pollut 157:1427–1437. https://doi.org/10.1016/j.envpol.2008.09.034

    Article  Google Scholar 

  25. Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P (2019) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J For Res 31:1–12. https://doi.org/10.1007/s11676-019-01034-4

    Article  Google Scholar 

  26. Blande JD (2021) Effects of air pollution on plant–insect interactions mediated by olfactory and visual cues. Curr Opin Environ Sci Health 19:100228. https://doi.org/10.1016/j.coesh.2020.100228

    Article  Google Scholar 

  27. Vaultier M-N, Jolivet Y (2015) Ozone sensing and early signaling in plants: an outline from the cloud. Environ Exp Bot 114:144–152. https://doi.org/10.1016/j.envexpbot.2014.11.012

    Article  Google Scholar 

  28. Bussotti F, Strasser RJ, Schaub M (2007) Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: a review. Environ Pollut 147:430–437. https://doi.org/10.1016/j.envpol.2006.08.036

    Article  Google Scholar 

  29. Bellini E, de Tullio MC (2019) Ascorbic acid and ozone: novel perspectives to explain an elusive relationship. Plan Theory 8:122. https://doi.org/10.3390/plants8050122

    Article  Google Scholar 

  30. Jolivet Y, Bagard M, Cabané M et al (2016) Deciphering the ozone-induced changes in cellular processes: a prerequisite for ozone risk assessment at the tree and forest levels. Ann For Sci 73:923–943. https://doi.org/10.1007/s13595-016-0580-3

    Article  Google Scholar 

  31. Masui N, Agathokleous E, Mochizuki T et al (2021) Ozone disrupts the communication between plants and insects in urban and suburban areas: an updated insight on plant volatiles. J For Res 32:1337–1349. https://doi.org/10.1007/S11676-020-01287-4

    Article  Google Scholar 

  32. Li P, Feng Z, Catalayud V et al (2017) A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ 40:2369–2380. https://doi.org/10.1111/pce.13043

    Article  Google Scholar 

  33. Cotrozzi L (2021) The effects of tropospheric ozone on oaks: a global meta-analysis. Sci Total Environ 756:143795. https://doi.org/10.1016/j.scitotenv.2020.143795

    Article  Google Scholar 

  34. Wittig VE, Ainsworth EA, Naidu SL et al (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Chang Biol 15:396–424. https://doi.org/10.1111/j.1365-2486.2008.01774.x

    Article  Google Scholar 

  35. Agathokleous E, Feng ZZ, Peñuelas J (2020) Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? Sci Total Environ 726:138637. https://doi.org/10.1016/j.scitotenv.2020.138637

    Article  Google Scholar 

  36. Watanabe M, Hoshika Y, Koike T, Izuta T (2017) Effects of ozone on Japanese trees. In: Air pollution impacts on plants in East Asia. Springer Japan, Tokyo, pp 73–100

    Chapter  Google Scholar 

  37. Agathokleous E, Saitanis CJ, Wang X et al (2016) A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. Water Air Soil Pollut 227:33. https://doi.org/10.1007/s11270-015-2715-9

    Article  Google Scholar 

  38. Yamaguchi M, Watanabe M, Matsumura H et al (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian J Atmos Environ 5:65–78. https://doi.org/10.5572/ajae.2011.5.2.065

    Article  Google Scholar 

  39. Karnosky DF, Pregitzer KS, Zak DR et al (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell Environ 28:965–981. https://doi.org/10.1111/j.1365-3040.2005.01362.x

    Article  Google Scholar 

  40. Oksanen E, Manninen S, Vapaavuori E, Holopainen T (2009) Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland. Ambio 38:413–417. https://doi.org/10.1579/0044-7447-38.8.413

    Article  Google Scholar 

  41. Koike T, Watanabe M, Hoshika Y et al (2013) Effects of ozone on forest ecosystems in East and Southeast Asia. In: Developments in environmental science. Elsevier, pp 371–390

    Google Scholar 

  42. Emberson L (2020) Effects of ozone on agriculture, forests and grasslands. Phil Trans R Soc A 378:2183. https://doi.org/10.1098/rsta.2019.0327

    Article  Google Scholar 

  43. Chappelka AH, Samuelson LJ (1998) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108. https://doi.org/10.1046/j.1469-8137.1998.00166.x

    Article  Google Scholar 

  44. Matyssek R, Karnosky DF, Wieser G et al (2010) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006. https://doi.org/10.1016/j.envpol.2009.11.033

    Article  Google Scholar 

  45. Matyssek R, Innes JL (1999) Ozone – a risk factor for trees and forests in Europe? In: Forest growth responses to the pollution climate of the 21st century. Springer, Dordrecht, pp 199–226

    Chapter  Google Scholar 

  46. Agathokleous E (2017) Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity. Ecotoxicol Environ Saf 142:530–537. https://doi.org/10.1016/j.ecoenv.2017.04.057

    Article  Google Scholar 

  47. Agathokleous E, Kitao M, Shi C et al (2022) Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: implications for renewable biomass production. J For Res. https://doi.org/10.1007/S11676-021-01400-1

  48. Sacchelli S, Carrari E, Paoletti E et al (2021) Economic impacts of ambient ozone pollution on wood production in Italy. Sci Rep 11:154. https://doi.org/10.1038/s41598-020-80516-6

    Article  Google Scholar 

  49. Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95. https://doi.org/10.1016/j.envpol.2007.06.037

    Article  Google Scholar 

  50. Agathokleous E, Kitao M, Kinose Y (2018) A review study on ozone phytotoxicity metrics for setting critical levels in Asia. Asian J Atmos Environ 12:1–16. https://doi.org/10.5572/ajae.2018.12.1.001

    Article  Google Scholar 

  51. Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483–493. https://doi.org/10.1016/j.envpol.2005.01.035

    Article  Google Scholar 

  52. Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139:135–151. https://doi.org/10.1046/j.1469-8137.1998.00177.x

    Article  Google Scholar 

  53. Oksanen E (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant Cell Environ 26:875–886. https://doi.org/10.1046/j.1365-3040.2003.01020.x

    Article  Google Scholar 

  54. Grulke NE, Heath RL (2020) Ozone effects on plants in natural ecosystems. Plant Biol 22:12–37. https://doi.org/10.1111/plb.12971

    Article  Google Scholar 

  55. Ripple WJ, Wolf C, Newsome TM et al (2020) World scientists’ warning of a climate emergency. Bioscience 70:8–12. https://doi.org/10.1093/biosci/biz088

    Article  Google Scholar 

  56. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  Google Scholar 

  57. Grace JB, Anderson TM, Seabloom EW et al (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. https://doi.org/10.1038/nature16524

    Article  Google Scholar 

  58. Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf8957. https://doi.org/10.1126/science.aaf8957

    Article  Google Scholar 

  59. Agathokleous E, Araminiene V, Belz RG et al (2019) A quantitative assessment of hormetic responses of plants to ozone. Environ Res 176:108527. https://doi.org/10.1016/j.envres.2019.108527

    Article  Google Scholar 

  60. Feng Z, Yuan X, Fares S et al (2019) Isoprene is more affected by climate drivers than monoterpenes: a meta-analytic review on plant isoprenoid emissions. Plant Cell Environ 42:1939–1949. https://doi.org/10.1111/pce.13535

    Article  Google Scholar 

  61. Paoletti E, Contran N, Manning WJ, Ferrara AM (2009) Use of the antiozonant ethylenediurea (EDU) in Italy: verification of the effects of ambient ozone on crop plants and trees and investigation of EDU’s mode of action. Environ Pollut 157:1453–1460. https://doi.org/10.1016/j.envpol.2008.09.021

    Article  Google Scholar 

  62. Cooley DR, Manning WJ (1987) The impact of ozone on assimilate partitioning in plants: a review. Environ Pollut 47:95–113. https://doi.org/10.1016/0269-7491(87)90040-6

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was prepared within Working Party 8.04.05 “Ground-level ozone” of the International Union of Forest Research Organizations (IUFRO). The authors acknowledge support from the National Natural Science Foundation of China (No. 4210070867 and 31950410547 to E.A.). E.A. also acknowledges support from the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenios Agathokleous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agathokleous, E., Feng, Z., Saitanis, C.J. (2023). Effects of Ozone on Forests. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_24

Download citation

Publish with us

Policies and ethics