Skip to main content

Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 273 Accesses

Abstract

The rapidly growing number of luminescent materials illustrates high interest and accessibility. Especially, lanthanide-containing luminescent materials possessing multiple properties have made them useful in a wide range of applications. A great deal of research has been carried out on lanthanide organic/inorganic complex-based materials in the last decade. Combining the excellent luminescent properties of lanthanide and the special properties of macrocyclic host, scientists could endow the materials with the more marvelous properties by host–guest interactions. This chapter mainly describes a systematical overview of the lanthanide of luminescent materials based on crown ether and cyclodextrin. Meanwhile their potential applications in functional materials and biosciences, etc. have been surveyed. Additionally, the future opportunities and challenges on the lanthanide of luminescent materials are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Article  PubMed  Google Scholar 

  2. Verhoeven JW (1996) Glossary of terms used in photochemistry (IUPAC recommendations 1996). Pure Appl Chem 68:2223

    Article  CAS  Google Scholar 

  3. Heine J, Müller-Buschbaum K (2013) Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev 42:9232–9242

    Article  CAS  PubMed  Google Scholar 

  4. (a) Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Rev 114: 4496–4539; (b) Kagan HB (2002) Introduction: Frontiers in lanthanide chemistry. Chem Rev 102:1805–1806; (c) Kenyon AJ (2002) Recent developments in rare-earth doped materials for optoelectronics. Prog Quantum Electron 26:225–284; (d) Blasse G (1988) Luminescence of inorganic solids: from isolated centres to concentrated systems. Prog Solid State Chem 18:79–171; (e) Bünzli J-CG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39:53–61; (f) Hasegawa Y, Wada Y, Yanagida S (2004) Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J Photochem Photobiol C: Photochem Rev 5:183–202; (g) Tissue BM (1998) Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem Mater 10:2837–2845; (h) Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Google Scholar 

  5. Feng J, Zhang H (2013) Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev 42:387–410

    Article  CAS  PubMed  Google Scholar 

  6. (a) Bünzli J-CG (2017) Rising stars in science and technology: luminescent lanthanide materials. Eur J Inorg Chem 2017:5058–5063; (b) Lemonnier J-F, Babel L, Guénée L, Mukherjee P, Waldeck DH, Eliseeva SV et al (2012) Perfluorinated aromatic spacers for sensitizing europium(III) centers in dinuclear oligomers: better than the best by chemical design? Angew Chem Int Ed 51:11302–11305; (c) Tropiano M, Kilah NL, Morten M, Rahman H, Davis JJ, Beer PD et al (2011) Reversible luminescence switching of a redox-active ferrocene–europium dyad. J Am Chem Soc 133:11847–11849; (d) de Bettencourt-Dias A, Barber PS, Bauer S (2012) A water-soluble pybox derivative and its highly luminescent lanthanide ion complexes. J Am Chem Soc 134:6987–6994; (e) McMahon BK, Gunnlaugsson T (2012) Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(III)-cyclen maleimide based lanthanide luminescent ‘switch on’ assay. J Am Chem Soc 134:10725–10728; (f) Kotova O, Bradberry SJ, Savyasachi AJ, Gunnlaugsson T (2018) Recent advances in the development of luminescent lanthanide-based supramolecular polymers and soft materials. Dalton Trans 47:16377–16387

    Google Scholar 

  7. (a) Bünzli J-CG, Piguet C (2002) Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem Rev 102:1897–1928; (b)Terai T, Kikuchi K, Iwasawa S-y, Kawabe T, Hirata Y, Urano Y et al (2006) Modulation of luminescence intensity of lanthanide complexes by photoinduced electron transfer and its application to a long-lived protease probe. J Am Chem Soc 128:6938–6946; (c) Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227; (d) Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45; (e) Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin 75:149–169; (f) Archer RD, Chen H, Thompson LC (1998) Synthesis, characterization, and luminescence of europium(III) schiff base complexes1a. Inorg Chem 37:2089–2095; (g) Gutierrez F, Tedeschi C, Maron L, Daudey J-P, Poteau R, Azema J et al (2004) Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans (9):1334–1347

    Google Scholar 

  8. (a) Bekiari V, Lianos P (1998) Strongly luminescent poly(ethylene glycol)-2,2′-bipyridine lanthanide ion complexes. Adv Mater 10:1455–1458; (b) Sabbatini N, Guardigli M, Lehn J-M (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228; (c) Driesen K, Van Deun R, Görller-Walrand C, Binnemans K (2004) Near-infrared luminescence of lanthanide calcein and lanthanide dipicolinate complexes doped into a silica−PEG hybrid material. Chem Mater 16:1531–1535; (d) Klink SI, Hebbink GA, Grave L, Van Veggel FCJM, Reinhoudt DN, Slooff LH et al (1999) Sensitized near-infrared luminescence from polydentate triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes. J Appl Phys 86:1181–1185

    Google Scholar 

  9. Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28:1251–1286

    Article  CAS  PubMed  Google Scholar 

  10. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li M, Luo Z, Zhao Y (2018) Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chem Mater 30:25–53

    Article  CAS  Google Scholar 

  12. Park C, Oh K, Lee SC, Kim C (2007) Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed 46:1455–1457

    Article  CAS  Google Scholar 

  13. Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M (2010) Photoresponsive pseudopolyrotaxane hydrogels based on competition of host–guest interactions. Angew Chem Int Ed 49:4409–4413

    Article  CAS  Google Scholar 

  14. Narayanan G, Aguda R, Hartman M, Chung C-C, Boy R, Gupta BS et al (2016) Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules 17:271–279

    Article  CAS  PubMed  Google Scholar 

  15. Willner I, Goren Z (1983) Diaza-crown ether capped cyclodextrin. A receptor with two recognition sites. J Chem Soc Chem Commun 24:1469–1470

    Google Scholar 

  16. Pikramenou Z, Nocera DG (1992) Luminescent supramolecular architectures: a cyclodextrin modified with a europium(III) crown swing. Inorg Chem 31:532–536

    Article  CAS  Google Scholar 

  17. Pikramenou Z, Johnson KM, Nocera DG (1993) Synthesis of a cradle cyclodextrin. Tetrahedron Lett 34:3531–3534

    Article  CAS  Google Scholar 

  18. Mortellaro MA, Nocera DG (1996) A supramolecular chemosensor for aromatic hydrocarbons. J Am Chem Soc 118:7414–7415

    Article  CAS  Google Scholar 

  19. Rudzinski CM, Engebretson DS, Hartmann WK, Nocera DG (1998) Mechanism for the sensitized luminescence of a lanthanide ion macrocycle appended to a cyclodextrin. J Phys Chem A 102:7442–7446

    Article  CAS  Google Scholar 

  20. Michels JJ, Huskens J, Reinhoudt DN (2002) Noncovalent binding of sensitizers for lanthanide(III) luminescence in an EDTA-bis(β-cyclodextrin) ligand. J Am Chem Soc 124:2056–2064

    Article  CAS  PubMed  Google Scholar 

  21. Hsu S-H, Yilmaz MD, Blum C, Subramaniam V, Reinhoudt DN, Velders AH, Huskens J (2009) Expression of sensitized Eu3+ luminescence at a multivalent interface. J Am Chem Soc 131:12567–12569

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Chen G-S, Chen Y, Ding F, Liu T, Zhao Y-L (2004) Molecular binding behavior of pyridine-2,6-dicarboxamide-bridged bis(β-cyclodextrin) with oligopeptides: switchable molecular binding mode. Bioconjug Chem 15:300–306

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Chen G-S, Chen Y, Zhang N, Chen J, Zhao Y-L (2006) Bundle-shaped cyclodextrin−Tb nano-supramolecular assembly mediated by C60: intramolecular energy transfer. Nano Lett 6:2196–2200

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Zhang N, Chen Y, Chen G-S (2006) Secondary assembly of bile salts mediated by β-cyclodextrin–terbium(III) complex. Bioorg Med Chem 14:6615–6620

    Article  CAS  PubMed  Google Scholar 

  25. Haider JM, Pikramenou Z (2001) Metal assembly of cyclodextrin recognition sites. Eur J Inorg Chem 2001:189–194

    Article  Google Scholar 

  26. Yilmaz MD, Hsu S-H, Reinhoudt DN, Velders AH, Huskens J (2010) Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew Chem 122:6074–6077

    Article  Google Scholar 

  27. Walt DR, Franz DR (2000) Peer reviewed: biological warfare detection. Anal Chem 72:738 A–746 A

    Article  CAS  Google Scholar 

  28. Avestro A-J, Belowich ME, Stoddart JF (2012) Cooperative self-assembly: producing synthetic polymers with precise and concise primary structures. Chem Soc Rev 41:5881–5895

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Wang G, Wang Y, Li H (2018) Reversible phase transition of robust luminescent hybrid hydrogels. Angew Chem Int Ed 57:2194–2198

    Article  CAS  Google Scholar 

  30. Kotková Z, Helm L, Kotek J, Hermann P, Lukeš I (2012) Gadolinium complexes of monophosphinic acid DOTA derivatives conjugated to cyclodextrin scaffolds: efficient MRI contrast agents for higher magnetic fields. Dalton Trans 41:13509–13519

    Article  PubMed  Google Scholar 

  31. Fredy JW, Scelle J, Guenet A, Morel E, Adam de Beaumais S, Ménand M et al (2014) Cyclodextrin polyrotaxanes as a highly modular platform for the development of imaging agents. Chem Eur J 20:10915–10920

    Article  CAS  PubMed  Google Scholar 

  32. Wenz G, Keller B (1992) Threading cyclodextrin rings on polymer chains. Angew Chem Int Ed Engl 31:197–199

    Article  Google Scholar 

  33. Fredy JW, Scelle J, Ramniceanu G, Doan B-T, Bonnet CS, Tóth É et al (2017) Mechanostereoselective one-pot synthesis of functionalized head-to-head cyclodextrin [3]rotaxanes and their application as magnetic resonance imaging contrast agents. Org Lett 19:1136–1139

    Article  CAS  PubMed  Google Scholar 

  34. Bradshaw JS, Maas GE, Izatt RM, Christensen JJ (1979) Synthetic macrocyclic di- and tetraester compounds. Chem Rev 79:37–52

    Article  CAS  Google Scholar 

  35. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Zhang H-Y, Yang L-X, Jiang Q, Liu Y (2008) A reversible luminescent lanthanide switch based on a dibenzo[24]-crown-8−dipicolinic acid conjugate. Org Lett 10:5557–5560

    Article  CAS  PubMed  Google Scholar 

  37. Raymo FM, Stoddart JF (1999) Interlocked macromolecules. Chem Rev 99:1643–1664

    Article  CAS  PubMed  Google Scholar 

  38. Ding Z-J, Zhang Y-M, Teng X, Liu Y (2011) Controlled photophysical behaviors between dibenzo-24-crown-8 bearing terpyridine moiety and fullerene-containing ammonium salt. J Org Chem 76:1910–1913

    Article  CAS  PubMed  Google Scholar 

  39. Serreli V, Lee C-F, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523

    Article  CAS  PubMed  Google Scholar 

  40. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778

    Article  CAS  PubMed  Google Scholar 

  41. Filatov MA, Karuthedath S, Polestshuk PM, Savoie H, Flanagan KJ, Sy C et al (2017) Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro. J Am Chem Soc 139:6282–6285

    Article  CAS  PubMed  Google Scholar 

  42. Cheng H-B, Zhang H-Y, Liu Y (2013) Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. J Am Chem Soc 135:10190–10193

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Y, Zhang H-Y, Zhang Z-Y, Liu Y (2017) Tunable luminescent lanthanide supramolecular assembly based on photoreaction of anthracene. J Am Chem Soc 139:7168–7171

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y, Zhang H-Y, Liu Y (2018) Photochemically driven luminescence switch of metal supramolecular assembly incorporating mixed lanthanides and photochromic guest molecule. J Photochem Photobiol A Chem 355:242–248

    Article  CAS  Google Scholar 

  45. Sambrook MR, Curiel D, Hayes EJ, Beer PD, Pope SJA, Faulkner S (2006) Sensitised near infrared emission from lanthanides via anion-templated assembly of d–f heteronuclear [2]pseudorotaxanes. New J Chem 30:1133–1136

    Article  CAS  Google Scholar 

  46. Allain C, Beer PD, Faulkner S, Jones MW, Kenwright AM, Kilah NL et al (2013) Lanthanide appended rotaxanes respond to changing chloride concentration. Chem Sci 4:489–493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, W., Chen, Y., Chen, L., Liu, Y. (2019). Construction and Application of Lanthanide Luminescent Materials Based on Macrocycles. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics