Skip to main content

Cucurbiturils-Based Pseudorotaxanes and Rotaxanes

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Cucurbit[n]uril, as a sort of macrocyclic host, has been well studied in the past decades because of their peculiar binding behaviors with guests by ion-dipolar, hydrophobic interactions, and so on. The various sizes endow them different binding properties which make them good building blocks for the construction of pseudorotaxanes and rotaxanes. Thereby, a summary of cucurbit[n]urils-based pseudorotaxanes and rotaxanes will be made in this chapter. This chapter will be separated into subsections mainly based on the kinds of hosts. Relating researches on the applications of cucurbit[n]urils-based pseudorotaxanes and rotaxanes will be outlined including biologic/photoelectric materials/catalyzing/smart materials. We hope this chapter could provide a useful reference and afflatus for those who working on pseudorotaxanes/rotaxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded Α-cyclodextrins. Nature 356:325

    Article  CAS  Google Scholar 

  2. Lee C-F, Leigh DA, Pritchard RG, Schultz D, Teat SJ, Timco GA, Winpenny REP (2009) Hybrid organic–inorganic rotaxanes and molecular shuttles. Nature 458:314

    Article  CAS  Google Scholar 

  3. Xue Z, Mayer MF (2010) Actuator prototype: capture and release of a self-entangled [1]rotaxane. J Am Chem Soc 132:3274–3276

    Article  CAS  Google Scholar 

  4. Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339:189–193

    Article  CAS  Google Scholar 

  5. Chen K-J, Tsai Y-C, Suzaki Y, Osakada K, Miura A, Horie M (2016) Rapid and reversible photoinduced switching of a rotaxane crystal. Nat Commun 7:13321

    Article  CAS  Google Scholar 

  6. Zhu K, Baggi G, Loeb SJ (2018) Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem 10:625–630

    Article  CAS  Google Scholar 

  7. Xu Y, Kaur R, Wang B, Minameyer MB, Gsänger S, Meyer B, Drewello T, Guldi DM, von Delius M (2018) Concave–convex Π–Π template approach enables the synthesis of [10]cycloparaphenylene–fullerene [2]rotaxanes. J Am Chem Soc 140:13413–13420

    Article  CAS  Google Scholar 

  8. Hu F-L, Mi Y, Zhu C, Abrahams BF, Braunstein P, Lang J-P (2018) Stereoselective solid-state synthesis of substituted cyclobutanes assisted by pseudorotaxane-like Mofs. Angew Chem Int Ed 57:12696–12701

    Article  CAS  Google Scholar 

  9. Price TL, Gibson HW (2018) Supramolecular pseudorotaxane polymers from biscryptands and bisparaquats. J Am Chem Soc 140:4455–4465

    Article  CAS  Google Scholar 

  10. Mohankumar M, Holler M, Meichsner E, Nierengarten J-F, Niess F, Sauvage J-P, Delavaux-Nicot B, Leoni E, Monti F, Malicka JM, Cocchi M, Bandini E, Armaroli N (2018) Heteroleptic copper(I) pseudorotaxanes incorporating macrocyclic phenanthroline ligands of different sizes. J Am Chem Soc 140:2336–2347

    Article  CAS  Google Scholar 

  11. Cheng S-C, Chen K-J, Suzaki Y, Tsuchido Y, Kuo T-S, Osakada K, Horie M (2018) Reversible laser-induced bending of pseudorotaxane crystals. J Am Chem Soc 140:90–93

    Article  CAS  Google Scholar 

  12. Li S-H, Zhang H-Y, Xu X, Liu Y (2015) Mechanically selflocked chiral gemini-catenanes. Nat Commun 6:7590

    Article  Google Scholar 

  13. Li Q, Zhang W, Miljanić OŠ, Sue C-H, Zhao Y-L, Liu L, Knobler CB, Stoddart JF, Yaghi OM (2009) Docking in metal-organic frameworks. Science 325:855–859

    Article  CAS  Google Scholar 

  14. Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M (2010) A double-stranded DNA rotaxane. Nat Nanotechnol 5:436

    Article  CAS  Google Scholar 

  15. Sevick E (2014) A light-driven molecular pump. Nat Nanotechnol 10:18

    Article  Google Scholar 

  16. Harada A, Li J, Kamachi M (1993) Synthesis of a tubular polymer from threaded cyclodextrins. Nature 364:516

    Article  CAS  Google Scholar 

  17. Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samorì P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nat Mater 1:160

    Article  CAS  Google Scholar 

  18. Choi S, T-w K, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in Lithium ion batteries. Science 357:279–283

    Article  CAS  Google Scholar 

  19. Lin Q, Hou X, Ke C (2017) Ring shuttling controls macroscopic motion in a three-dimensional printed polyrotaxane monolith. Angew Chem Int Ed 56:4452–4457

    Article  CAS  Google Scholar 

  20. Belowich ME, Valente C, Smaldone RA, Friedman DC, Thiel J, Cronin L, Stoddart JF (2012) Positive cooperativity in the template-directed synthesis of monodisperse macromolecules. J Am Chem Soc 134:5243–5261

    Article  CAS  Google Scholar 

  21. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023

    Article  CAS  Google Scholar 

  22. Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2013) Inducing rapid cellular response on Rgd-binding threaded macromolecular surfaces. J Am Chem Soc 135:5513–5516

    Article  CAS  Google Scholar 

  23. Momčilović N, Clark PG, Boydston AJ, Grubbs RH (2011) One-pot synthesis of polyrotaxanes via acyclic diene metathesis polymerization of supramolecular monomers. J Am Chem Soc 133:19087–19089

    Article  Google Scholar 

  24. Ikeda T, Higuchi M, Kurth DG (2009) From thiophene [2]rotaxane to polythiophene polyrotaxane. J Am Chem Soc 131:9158–9159

    Article  CAS  Google Scholar 

  25. Coelho JP, González-Rubio G, Delices A, Barcina JO, Salgado C, Ávila D, Peña-Rodríguez O, Tardajos G, Guerrero-Martínez A (2014) Polyrotaxane-mediated self-assembly of gold nanospheres into fully reversible supercrystals. Angew Chem Int Ed 53:12751–12755

    Article  CAS  Google Scholar 

  26. Liu Y, Li C-J, Zhang H-Y, Wang L-H, Luo Q, Wang G (2007) A chromophoric switch based on pseudorotaxanes. J Chem Phys 126:064705

    Article  Google Scholar 

  27. Share AI, Parimal K, Flood AH (2010) Bilability is defined when one electron is used to switch between concerted and stepwise pathways in cu(I)-based bistable [2/3]pseudorotaxanes. J Am Chem Soc 132:1665–1675

    Article  CAS  Google Scholar 

  28. Stoddart JF (2017) Mechanically interlocked molecules (Mims) – molecular shuttles, switches, and machines (Nobel lecture). Angew Chem Int Ed 56:11094–11125

    Article  CAS  Google Scholar 

  29. Liu Y, Jiang W, Zhang H-Y, Li C-J (2006) A multifunctional arithmetical processor model integrated inside a single molecule. J Phys Chem B 110:14231–14235

    Article  CAS  Google Scholar 

  30. Credi A, Balzani V, Langford SJ, Stoddart JF (1997) Logic operations at the molecular level. An Xor gate based on a molecular machine. J Am Chem Soc 119:2679–2681

    Article  CAS  Google Scholar 

  31. Zhu SS, Carroll PJ, Swager TM (1996) Conducting polymetallorotaxanes: a supramolecular approach to transition metal ion sensors. J Am Chem Soc 118:8713–8714

    Article  CAS  Google Scholar 

  32. Lim JYC, Marques I, Félix V, Beer PD (2018) A chiral halogen-bonding [3]rotaxane for the recognition and sensing of biologically relevant dicarboxylate anions. Angew Chem Int Ed 57:584–588

    Article  CAS  Google Scholar 

  33. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[N]Uril (N = 5, 7, and 8). J Am Chem Soc 122:540–541

    Article  CAS  Google Scholar 

  34. Day A, Arnold AP, Blanch RJ, Snushall B (2001) Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem 66:8094–8100

    Article  CAS  Google Scholar 

  35. Isobe H, Sato S, Nakamura E (2002) Synthesis of disubstituted cucurbit[6]Uril and its rotaxane derivative. Org Lett 4:1287–1289

    Article  CAS  Google Scholar 

  36. Ni X-L, Xiao X, Cong H, Liang L-L, Cheng K, Cheng X-J, Ji N-N, Zhu Q-J, Xue S-F, Tao Z (2013) Cucurbit[N]Uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem Soc Rev 42:9480–9508

    Article  CAS  Google Scholar 

  37. Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    Article  CAS  Google Scholar 

  38. Mock WL, Shih NY (1983) Host-guest binding capacity of cucurbituril. J Org Chem 48:3618–3619

    Article  CAS  Google Scholar 

  39. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406

    Article  CAS  Google Scholar 

  40. Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson MK, Kim K, Inoue Y (2007) A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation. Proc Natl Acad Sci U S A 104:20737–20742

    Article  CAS  Google Scholar 

  41. Sun X, Li B, Cao J, Chen J, Wang N, Wan D, Zhang H, Zhou X (2012) Pseudopolyrotaxanes of cucurbit[6]Uril: a three-dimensional network self-assembled by Clo4−(H2o)2 water clusters. Chin J Chem 30:941–946

    Article  CAS  Google Scholar 

  42. Kolman V, Khan MSA, Babinský M, Marek R, Sindelar V (2011) Supramolecular shuttle based on inclusion complex between cucurbit[6]uril and bispyridinium ethylene. Org Lett 13:6148–6151

    Article  CAS  Google Scholar 

  43. Mock WL, Irra TA, Wepsiec JP, Adhya M (1989) Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced Triazole formation. J Org Chem 54:5302–5308

    Article  CAS  Google Scholar 

  44. Hou X, Ke C, Fraser Stoddart J (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780

    Article  CAS  Google Scholar 

  45. Liu Y, Ke C-F, Zhang H-Y, Wu W-J, Shi J (2007) Reversible 2d Pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]Uril. J Org Chem 72:280–283

    Article  CAS  Google Scholar 

  46. Ke C-F, Hou S, Zhang H-Y, Liu Y, Yang K, Feng X-Z (2007) Controllable DNA condensation through cucurbit[6]Uril in 2d pseudopolyrotaxanes. Chem Commun 0:3374–3376

    Google Scholar 

  47. Mei L, Q-y W, L-y Y, Wang L, An S-w, Z-n X, K-q H, Z-f C, Burns PC, W-q S (2016) An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties. Chem Eur J 22:11329–11338

    Article  CAS  Google Scholar 

  48. Zhang X-J, Zhang Y-M, Wang Z, Chen Y, Liu Y (2016) Cooperative DNA compaction by ternary supramolecular complex with cucurbituril/cyclodextrin pair. ChemistrySelect 1:685–690

    Article  CAS  Google Scholar 

  49. Finbloom JA, Han K, Slack CC, Furst AL, Francis MB (2017) Cucurbit[6]uril-promoted click chemistry for protein modification. J Am Chem Soc 139:9691–9697

    Article  CAS  Google Scholar 

  50. Kim K, Jeon WS, Kang J-K, Lee JW, Jon SY, Kim T, Kim K (2003) A pseudorotaxane on gold: formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew Chem 115:2395–2398

    Article  Google Scholar 

  51. Yan Z, Huang Q, Liang W, Yu X, Zhou D, Wu W, Chruma JJ, Yang C (2017) Enantiodifferentiation in the photoisomerization of (Z,Z)-1,3-cyclooctadiene in the cavity of Γ-cyclodextrin–cucurbit[6]uril-wheeled [4]rotaxanes with an encapsulated photosensitizer. Org Lett 19:898–901

    Article  CAS  Google Scholar 

  52. Dai L, Wu W, Liang W, Chen W, Yu X, Ji J, Xiao C, Yang C (2018) Enhanced chiral recognition by Γ-cyclodextrin–cucurbit[6]uril-cowheeled [4]pseudorotaxanes. Chem Commun 54:2643–2646

    Article  CAS  Google Scholar 

  53. Zhang Y-M, Wang Z, Chen Y, Chen H-Z, Ding F, Liu Y (2014) Molecular binding behavior of a bispyridinium-containing bis(Β-cyclodextrin) and its corresponding [2]rotaxane towards bile salts. Organic Biomol Chem 12:2559–2567

    Article  CAS  Google Scholar 

  54. Liu Y, Li X-Y, Zhang H-Y, Li C-J, Ding F (2007) Cyclodextrin-driven movement of cucurbit[7]uril. J Org Chem 72:3640–3645

    Article  CAS  Google Scholar 

  55. Sindelar V, Silvi S, Kaifer A E (2006) Switching a molecular shuttle on and off: simple, Ph-controlled pseudorotaxanes based on cucurbit[7]uril. Chem Commun 0:2185–2187

    Google Scholar 

  56. Sobransingh D, Kaifer AE (2006) Electrochemically switchable cucurbit[7]uril-based pseudorotaxanes. Org Lett 8:3247–3250

    Article  CAS  Google Scholar 

  57. Liu Y, Shi J, Chen Y, Ke C-F (2008) A polymeric pseudorotaxane constructed from cucurbituril and aniline, and stabilization of its radical cation. Angew Chem Int Ed 47:7293–7296

    Article  CAS  Google Scholar 

  58. Qian Z, Huang X, Wang Q (2017) Stabilizing benzyl viologen radical cation by cucurbit[7]uril rotaxanation. Dyes Pigments 145:365–370

    Article  CAS  Google Scholar 

  59. Li S-H, Xu X, Zhou Y, Zhao Q, Liu Y (2017) Reversibly tunable white-light emissions of styrylpyridiniums with cucurbiturils in aqueous solution. Org Lett 19:6650–6653

    Article  CAS  Google Scholar 

  60. Song Y, Huang X, Hua H, Wang Q (2017) The synthesis of a rigid conjugated viologen and its cucurbituril pseudorotaxanes. Dyes Pigments 137:229–235

    Article  CAS  Google Scholar 

  61. Huang Z, Zhang H, Bai H, Bai Y, Wang S, Zhang X (2016) Polypseudorotaxane constructed from cationic polymer with cucurbit[7]uril for controlled antibacterial activity. ACS Macro Lett 5:1109–1113

    Article  CAS  Google Scholar 

  62. Bruns CJ, Liu H, Francis MB (2016) Near-quantitative aqueous synthesis of rotaxanes via bioconjugation to oligopeptides and proteins. J Am Chem Soc 138:15307–15310

    Article  CAS  Google Scholar 

  63. Ding Z-J, Zhang H-Y, Wang L-H, Ding F, Liu Y (2011) A heterowheel [3]pseudorotaxane by integrating Β-cyclodextrin and cucurbit[8]uril inclusion complexes. Org Lett 13:856–859

    Article  CAS  Google Scholar 

  64. Zhang Z-J, Zhang Y-M, Liu Y (2011) Controlled molecular self-assembly behaviors between cucurbituril and bispyridinium derivatives. J Org Chem 76:4682–4685

    Article  CAS  Google Scholar 

  65. Qian H, Guo D-S, Liu Y (2012) Cucurbituril-modulated supramolecular assemblies: from cyclic oligomers to linear polymers. Chem Eur J 18:5087–5095

    Article  CAS  Google Scholar 

  66. Wang Q, Chen Y, Liu Y (2013) Supramolecular ternary polymer mediated by cucurbituril and cyclodextrin. Polym Chem 4:4192–4198

    Article  CAS  Google Scholar 

  67. Zhao J, Zhang Y-M, Sun H-L, Chang X-Y, Liu Y (2014) Multistimuli-responsive supramolecular assembly of cucurbituril/cyclodextrin pairs with an azobenzene-containing bispyridinium guest. Chem Eur J 20:15108–15115

    Article  CAS  Google Scholar 

  68. del Barrio J, Horton PN, Lairez D, Lloyd GO, Toprakcioglu C, Scherman OA (2013) Photocontrol over cucurbit[8]uril complexes: stoichiometry and supramolecular polymers. J Am Chem Soc 135:11760–11763

    Article  Google Scholar 

  69. Joseph R, Nkrumah A, Clark RJ, Masson E (2014) Stabilization of cucurbituril/guest assemblies via long-range coulombic and Ch⋯O interactions. J Am Chem Soc 136:6602–6607

    Article  CAS  Google Scholar 

  70. Chen L, Huang Z, Xu J-F, Wang Z, Zhang X (2016) Controllable supramolecular polymerization through self-sorting of aliphatic and aromatic motifs. Polym Chem 7:1397–1404

    Article  CAS  Google Scholar 

  71. Ko YH, Kim K, Kang J-K, Chun H, Lee JW, Sakamoto S, Yamaguchi K, Fettinger JC, Kim K (2004) Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. J Am Chem Soc 126:1932–1933

    Article  CAS  Google Scholar 

  72. Zhu W, Wang C, Lan Y, Li J, Wang H, Gao N, Ji J, Li G (2016) Chaperone-assisted formation of cucurbit[8]uril-based molecular porous materials with one-dimensional channel structure. Langmuir 32:9045–9052

    Article  CAS  Google Scholar 

  73. Rauwald U, Scherman OA (2008) Supramolecular block copolymers with cucurbit[8]uril in water. Angew Chem Int Ed 47:3950–3953

    Article  CAS  Google Scholar 

  74. Kim H-J, Whang DR, Gierschner J, Park SY (2016) Highly enhanced fluorescence of supramolecular polymers based on a cyanostilbene derivative and cucurbit[8]uril in aqueous solution. Angew Chem Int Ed 55:15915–15919

    Article  CAS  Google Scholar 

  75. Biedermann F, Elmalem E, Ghosh I, Nau WM, Scherman OA (2012) Strongly fluorescent, switchable perylene bis(diimide) host–guest complexes with cucurbit[8]Uril in water. Angew Chem Int Ed 51:7739–7743

    Article  CAS  Google Scholar 

  76. Tan CSY, Liu J, Groombridge AS, Barrow SJ, Dreiss CA, Scherman OA (2018) Controlling spatiotemporal mechanics of supramolecular hydrogel networks with highly branched cucurbit[8]uril polyrotaxanes. Adv Funct Mater 28:1702994

    Article  Google Scholar 

  77. Liu J, Tan CSY, Yu Z, Lan Y, Abell C, Scherman OA (2017) Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery. Adv Mater 29:1604951

    Article  Google Scholar 

  78. Yu Z, Liu J, Tan CSY, Scherman OA, Abell C (2018) Supramolecular nested microbeads as building blocks for macroscopic self-healing scaffolds. Angew Chem Int Ed 57:3079–3083

    Article  CAS  Google Scholar 

  79. Zhang W, Zhang H-Y, Zhang Y-H, Liu Y (2015) Fluorescent supramolecular polypseudorotaxane architectures with Ru(ii)/tri(bipyridine) centers as multifunctional DNA reagents. Chem Commun 51:16127–16130

    Article  CAS  Google Scholar 

  80. Uhlenheuer DA, Young JF, Nguyen HD, Scheepstra M, Brunsveld L (2011) Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chem Commun 47:6798–6800

    Article  CAS  Google Scholar 

  81. Biedermann F, Rauwald U, Zayed JM, Scherman OA (2011) A supramolecular route for reversible protein-polymer conjugation. Chem Sci 2:279–286

    Article  CAS  Google Scholar 

  82. Ramaekers M, Wijnands SPW, van Dongen JLJ, Brunsveld L, Dankers PYW (2015) Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation. Chem Commun 51:3147–3150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, ZY., Chen, Y., Liu, Y. (2019). Cucurbiturils-Based Pseudorotaxanes and Rotaxanes. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics