Skip to main content

Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review*

  • Reference work entry
  • First Online:
Handbook of Production Economics

Abstract

The purpose of this contribution is to provide an overview of developments in nonconvex production technologies and economic value functions, with special attention to the cost function. Apart from a somewhat selective review of theoretical issues, the emphasis is on whether the assumption of convexity makes a difference in practice. Anticipating our conclusion, we argue that traditional convex empirical results differ on average rather markedly from alternative nonconvex ones. This should make the discipline reconsider its traditional relationship with convexity in both theoretical and applied production analysis.

We acknowledge the most helpful comments of R. Chambers and G. Cesaroni on an earlier version. The usual disclaimer applies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 339.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the convex VRS and NDRS technologies do not satisfy inaction.

  2. 2.

    Note that the use of enumeration for the basic nonconvex FDH production model (9) has been around in the literature for quite a while: examples include [49, 63, 122], among others.

  3. 3.

    This poor performance is related to the huge size of the LP formulation in Leleu [85].

  4. 4.

    This point was suggested to the authors by R. Chambers.

  5. 5.

    This decomposition ignores structural efficiency or congestion. Recently, an attempt was made to develop new methods to measure strong forms of hypercongestion for convex and nonconvex technologies alike in Briec et al. [31]. This new methodology is empirically illustrated in Briec et al. [32]. Abad and Briec [1] transpose this methodology toward the modeling of bad outputs using a by-production framework.

  6. 6.

    In case the study does not report cost estimates but rather overall efficiency ratios, one can obtain CC Γ(y, w) = C C(y, w)∕C NC(y, w) by taking the ratio of the corresponding overall efficiency ratios OE C(x, y, w)∕OE NC(x, y, w). The observed cost in each of the denominators of OE Λ(x, y, w) cancels out.

  7. 7.

    The Painlevé-Kuratowski lower [upper] limit (sometimes also called Peano limit) of the sequence of sets \(\{E_n\}_{n\in \mathbb {N}}\) is denoted Li n E n [Ls n E n]. For a set of points p for which there exists a sequence {p n} of points such that p n ∈ E n for all n and p =limn p n, a sequence \(\{E_n\}_{n\in \mathbb {N}}\) of subsets of \( {\mathbb {R}}^m\) is said to converge, in the Painlevé-Kuratowski sense, to a set E if Ls n E n = E = Li n E n, in which case we write E = Lim n E n.

References

  1. Abad A, Briec W (2019) On the axiomatic of pollution-generating technologies: non-parametric production analysis. Eur J Oper Res 277(1):377–390

    Article  Google Scholar 

  2. Ackerman F (2002) Still dead after all these years: interpreting the failure of general equilibrium theory. J Econ Methodol 9(2):119–139

    Article  Google Scholar 

  3. Adilov G, Yesilce I (2012) \(\mathbb B^{-1}\)-convex Sets and \(\mathbb B^{-1}\)-measurable maps. Numer Funct Anal Optim 33(2):131–141

    Google Scholar 

  4. Afriat S (1972) Efficiency estimation of production functions. Int Econ Rev 13(3):568–598

    Article  Google Scholar 

  5. Agrell P, Tind J (2001) A dual approach to nonconvex frontier models. J Prod Anal 16(2): 129–147

    Article  Google Scholar 

  6. Aliprantis C, Border K (2006) Infinite dimensional analysis: a Hitchhiker’s guide, 3rd edn. Springer, Berlin

    Google Scholar 

  7. Andriamasy L, Barros C, Liang Q (2014) Technical efficiency of French nuclear energy plants. Appl Econ 46(18):2119–2126

    Article  Google Scholar 

  8. Andriamasy L, Briec W, Mussard S (2017) On some relations between several generalized convex DEA models. Optimization 66(4):547–570

    Article  Google Scholar 

  9. Andriamasy R, Briec W, Solonandrasana B (2017) Tropical production technologies. Pac J Optim 13(4):683–706

    Google Scholar 

  10. Ang F, Kerstens P (2017) Decomposing the Luenberger-Hicks-Moorsteen total factor productivity indicator: an application to U.S. agriculture. Eur J Oper Res 260(1):359–375

    Article  Google Scholar 

  11. Balaguer-Coll M, Prior D, Tortosa-Ausina E (2007) On the determinants of local government performance: a two-stage nonparametric approach. Eur Econ Rev 51(2):425–451

    Article  Google Scholar 

  12. Baldwin E, Klemperer P (2019) Understanding preferences: “Demand Types”, and the existence of equilibrium with indivisibilities. Econometrica 87(3):867–932

    Article  Google Scholar 

  13. Banker R, Charnes A, Cooper W (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30(9):1078–1092

    Article  Google Scholar 

  14. Barros C, Liang Q, Peypoch N (2013) The efficiency of French regional airports: an inverse \(\mathbb {B}\)-convex analysis. Int J Prod Econ 141(1):668–674

    Article  Google Scholar 

  15. Barros C, Fujii H, Managi S (2015) How scale and ownership are related to financial performance? A productivity analysis of the Chinese banking sector. J Econ Struct 4:<?pag ?>article 16

    Google Scholar 

  16. Ben-Tal A (1977) On generalized means and generalized convex functions. J Optim Theory Appl 21(1):1–13

    Article  Google Scholar 

  17. Bjurek H (1996) The Malmquist total factor productivity index. Scand J Econ 98(2):303–313

    Article  Google Scholar 

  18. Bogetoft P (1996) DEA on relaxed convexity assumptions. Manag Sci 42(3):457–465

    Article  Google Scholar 

  19. Bogetoft P, Tama J, Tind J (2000) Convex input and output projections of nonconvex production possibility sets. Manag Sci 46(6):858–869

    Article  Google Scholar 

  20. Boles J (1966) Efficiency squared – efficient computation of efficiency indexes. In: Proceedings of the Annual Meeting (Western Farm Economics Association). Western Agricultural Economics Association, Washington, pp 137–142

    Google Scholar 

  21. Boscolo M, Vincent J (2003) Nonconvexities in the production of timber, biodiversity, and carbon sequestration. J Environ Econ Manag 46(2):251–268

    Article  Google Scholar 

  22. Bouhnik S, Golany B, Passy U, Hackman S, Vlatsa D (2001) Lower bound restrictions on intensities in data envelopment analysis. J Prod Anal 16(3):241–261

    Article  Google Scholar 

  23. Boussemart J-P, Briec W, Peypoch N, Tavéra C (2009) α-returns to scale and multi-output production technologies. Eur J Oper Res 197(1):332–339

    Article  Google Scholar 

  24. Boussemart J-P, Briec W, Leleu H, Ravelojaona P (2019) On estimating optimal α-returns to scale. J Oper Res Soc 70(1):1–11

    Article  Google Scholar 

  25. Briec W, Horvath C (2004) \(\mathbb {B}\)-convexity. Optimization 52(2):103–127

    Article  Google Scholar 

  26. Briec W, Horvath C (2009) A \(\mathbb {B}\)-convex production model for evaluating performance of firms. J Math Anal Appl 355(1):131–144

    Article  Google Scholar 

  27. Briec W, Kerstens K (2004) A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator. Econ Theory 23(4):925–939

    Article  Google Scholar 

  28. Briec W, Kerstens K (2006) Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: an integrated approach based upon implicit enumeration algorithms. TOP 14(1):135–166

    Article  Google Scholar 

  29. Briec W, Liang Q (2011) On some semilattice structures for production technologies. Eur J Oper Res 215(3):740–749

    Google Scholar 

  30. Briec W, Kerstens K, Vanden Eeckaut P (2004) Non-convex technologies and cost functions: definitions, duality and nonparametric tests of convexity. J Econ 81(2): 155–192

    Article  Google Scholar 

  31. Briec W, Kerstens K, Van de Woestyne I (2016) Congestion in production correspondences. J Econ 119(1):65–90

    Article  Google Scholar 

  32. Briec W, Kerstens K, Van de Woestyne I (2018) Hypercongestion in production correspondences: an empirical exploration. Appl Econ 50(27): 2938–2956

    Article  Google Scholar 

  33. Brokken R (1977) The case of a queer isoquant: increasing marginal rates of substitution of grain for roughage in cattle finishing. West J Agric Econ 1(1):221–224

    Google Scholar 

  34. Cesaroni G, Giovannola D (2015) Average-cost efficiency and optimal scale sizes in non-parametric analysis. Eur J Oper Res 242(1):121–133

    Article  Google Scholar 

  35. Cesaroni G, Kerstens K, Van de Woestyne I (2017) Global and local scale characteristics in convex and nonconvex nonparametric technologies: a first empirical exploration. Eur J Oper Res 259(2):576–586

    Article  Google Scholar 

  36. Cesaroni G, Kerstens K, Van de Woestyne I (2017) A new input-oriented plant capacity notion: definition and empirical comparison. Pac Econ Rev 22(4):720–739

    Article  Google Scholar 

  37. Chambers R (2002) Exact nonradial input, output, and productivity measurement. Econ Theory 20(4):751–765

    Article  Google Scholar 

  38. Chambers R, Chung Y, Färe R (1998) Profit, directional distance functions, and Nerlovian efficiency. J Optim Theory Appl 98(2):351–364

    Article  Google Scholar 

  39. Charnes A, Cooper W, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444

    Article  Google Scholar 

  40. Charnes A, Cooper W, Seiford L, Stutz J (1982) A multiplicative model for efficiency analysis. Socio-Econ Plan Sci 16(5):223–224

    Article  Google Scholar 

  41. Chavas J-P, Briec W (2012) On economic efficiency under non-convexity. Econ Theory 50(3):671–701

    Article  Google Scholar 

  42. Chavas J, Kim K (2015) Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach. J Prod Anal 43(1):59–74

    Article  Google Scholar 

  43. Clarke F (1983) Optimization and nonsmooth analysis. Wiley, New York

    Google Scholar 

  44. Cook W, Seiford L (2009) Data envelopment analysis (DEA) – thirty years on. Eur J Oper Res 192(1):1–17

    Article  Google Scholar 

  45. Cummins D, Zi H (1998) Comparison of frontier efficiency methods: an application to the U.S. life insurance industry. J Prod Anal 10(2):131–152

    Article  Google Scholar 

  46. Dasgupta P, Mähler K-G (2003) The economics of non-convex ecosystems: introduction. Environ Resour Econ 26(4):499–525

    Article  Google Scholar 

  47. De Borger B, Kerstens K (1996) Cost efficiency of Belgian local governments: a comparative analysis of FDH, DEA, and econometric approaches. Reg Sci Urban Econ 26(2): 145–170

    Article  Google Scholar 

  48. De Borger B, Ferrier G, Kerstens K (1998) The choice of a technical efficiency measure on the free disposal hull reference technology: a comparison using US banking data. Eur J Oper Res 105(3):427–446

    Article  Google Scholar 

  49. Deprins D, Simar L, Tulkens H (1984) Measuring labor efficiency in post offices. In: Marchand M, Pestieau P, Tulkens H (eds) The performance of public enterprises: concepts and measurements, pp 243–268. North Holland, Amsterdam

    Google Scholar 

  50. Diewert W, Parkan C (1983) Linear programming test of regularity conditions for production functions. In: Eichhorn W, Neumann K, Shephard R (eds) Quantitative studies on production and prices, pp 131–158. Physica-Verlag, Würzburg

    Chapter  Google Scholar 

  51. Ebrahimnejad A, Shahverdi R, Balf F, Hatefi M (2013) Finding target units in FDH model by least-distance measure model. Kybernetika 49(4):619–635

    Google Scholar 

  52. Ehrgott M, Tind J (2009) Column generation with free replicability in DEA. Omega 37(5): 943–950

    Article  Google Scholar 

  53. Epstein M, Henderson J (1989) Data envelopment analysis for managerial control and diagnosis. Decis Sci 20(1):90–119

    Article  Google Scholar 

  54. Färe R (1988) Fundamentals of production theory. Springer, Berlin

    Book  Google Scholar 

  55. Färe R, Li S-K (1998) Inner and outer approximations of technology: a data envelopment approach. Eur J Oper Res 105(3):622–625

    Article  Google Scholar 

  56. Färe R, Grosskopf S, Lovell C (1983) The structure of technical efficiency. Scand J Econ 85(2):181–190

    Article  Google Scholar 

  57. Färe R, Grosskopf S, Lovell C (1985) The measurement of efficiency of production. Kluwer, Boston

    Book  Google Scholar 

  58. Färe R, Grosskopf S, Njinkeu D (1988) On piecewise reference technologies. Manag Sci 34(12): 1507–1511

    Article  Google Scholar 

  59. Färe R, Grosskopf S, Valdmanis V (1989) Capacity, competition and efficiency in hospitals: a nonparametric approach. J Prod Anal 1(2):123–138

    Article  Google Scholar 

  60. Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84(1):66–83

    Google Scholar 

  61. Farrell M (1957) The measurement of productive efficiency. J R Stat Soc Ser A General 120(3):253–281

    Article  Google Scholar 

  62. Farrell M (1959) The convexity assumption in the theory of competitive markets. J Polit Econ 67(4):377–391

    Article  Google Scholar 

  63. Fried H, Lovell C, Turner J (1996) An analysis of the performance of university affiliated credit unions. Comput Oper Res 23(4):375–384

    Article  Google Scholar 

  64. Fukuyama H, Hougaard J, Sekitani K, Shi J (2016) Efficiency measurement with a non-convex free disposal hull technology. J Oper Res Soc 67(1):9–19

    Article  Google Scholar 

  65. Goncalves O, Liang Q, Peypoch N (2012) Technical efficiency measurement and inverse \(\mathbb {B}\)-convexity: Moroccan travel agencies. Tour Econ 18(3):597–606

    Article  Google Scholar 

  66. Green R, Cook W (2004) A free coordination hull approach to efficiency measurement. J Oper Res Soc 55(10):1059–1063

    Article  Google Scholar 

  67. Grifell-Tatjé, E., Kerstens K (2008) Incentive regulation and the role of convexity in benchmarking electricity distribution: economists versus engineers. Ann Public Cooperative Econ 79(2):227–248

    Article  Google Scholar 

  68. Hackman S (2008) Production economics: integrating the microeconomic and engineering perspectives. Springer, Berlin

    Google Scholar 

  69. Halme M, Korhonen P, Eskelinen J (2014) Non-convex Value efficiency analysis and its application to bank branch sales evaluation. Omega 48:10–18

    Article  Google Scholar 

  70. Jacobsen S (1970) Production correspondences. Econometrica 38(5):754–771

    Article  Google Scholar 

  71. Johansen L (1987) Production functions and the concept of capacity. In: Førsund F (ed) Collected works of Leif Johansen, vol 1. North Holland, Amsterdam, pp 359–382

    Google Scholar 

  72. Kerstens K, Managi S (2012) Total Factor productivity growth and convergence in the petroleum industry: empirical analysis testing for convexity. Int J Prod Econ 139(1): 196–206

    Article  Google Scholar 

  73. Kerstens K, Vanden Eeckaut P (1999) Estimating returns to scale using nonparametric deterministic technologies: a new method based on goodness-of-fit. Eur J Oper Res 113(1):206–214

    Article  Google Scholar 

  74. Kerstens K, Van de Woestyne I (2014a) Comparing Malmquist and Hicks-Moorsteen productivity indices: exploring the impact of unbalanced vs. balanced panel data. Eur J Oper Res 233(3):749–758

    Article  Google Scholar 

  75. Kerstens K, Van de Woestyne I (2014b) Solution methods for nonconvex free disposal hull models: a review and some critical comments. Asia-Pac J Oper Res 31(1)

    Google Scholar 

  76. Kerstens K, Van de Woestyne I (2018) Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions. Ann Oper Res 271(2):1067–1078

    Article  Google Scholar 

  77. Kerstens K, Squires D, Vestergaard N (2005) Methodological reflections on the short-run Johansen industry model in relation to capacity management. Mar Res Econ 20(4):425–443

    Article  Google Scholar 

  78. Kerstens K, Sadeghi J, Van de Woestyne I (2019a) Convex and nonconvex input-oriented technical and economic capacity measures: an empirical comparison. Eur J Oper Res 276(2):699–709

    Article  Google Scholar 

  79. Kerstens K, Sadeghi J, Van de Woestyne I (2019b) Plant capacity and attainability: exploration and remedies. Oper Res 67(4):1135–1149

    Google Scholar 

  80. Kleine A (2004) A general model framework for DEA. Omega 32(1):17–23

    Article  Google Scholar 

  81. Krivonozhko V, Lychev A (2017a) Algorithms for construction of efficient frontier for nonconvex models on the basis of optimization methods. Dokl Math 96(2):541–544

    Article  Google Scholar 

  82. Krivonozhko V, Lychev A (2017b) Frontier visualization for nonconvex models with the use of purposeful enumeration methods. Dokl Math 96(3):650–653

    Article  Google Scholar 

  83. Krivonozhko V, Lychev A (2019) Frontier visualization and estimation of returns to scale in free disposal hull models. Comput Math Math Phys 59(3):501–511

    Article  Google Scholar 

  84. Krivonozhko V, Lychev A, Blokhina N (2019) Construction of three-dimensional sections of the efficient frontier for non-convex models. Doklady Math 100(2):472–475

    Article  Google Scholar 

  85. Leleu H (2006) A linear programming framework for free disposal hull technologies and cost functions: primal and dual models. Eur J Oper Res 168(2):340–344

    Article  Google Scholar 

  86. Leleu H (2009) Mixing DEA and FDH models together. J Oper Res Soc 60(12):1730–1737

    Article  Google Scholar 

  87. Leleu H, Moises J, Valdmanis V (2012) Optimal productive size of hospital’s intensive care units. Int J Prod Econ 136(2):297–305

    Article  Google Scholar 

  88. Lovell C, Vanden Eeckaut P (1994) Frontier tales: DEA and FDH. In: Diewert W, Spremann K, Stehlings F (eds) Mathematical modelling in economics: essays in honor of Wolfgang Eichhorn. Springer, Berlin, pp 446–457

    Google Scholar 

  89. Mairesse F, Vanden Eeckaut P (2002) Museum assessment and FDH technology: towards a global approach. J Cult Econ 26(4):261–286

    Article  Google Scholar 

  90. Mayston D (2014) Effectiveness analysis of quality achievements for university departments of economics. Appl Econ 46(31):3788–3797

    Article  Google Scholar 

  91. Mostafaee A, Soleimani-Damaneh M (2020a) Closed form of the response function in FDH technologies: theory, computation and application. RAIRO-Oper Res 54(1):53–68

    Article  Google Scholar 

  92. Mostafaee A, Soleimani-Damaneh M (2020b) Global sub-increasing and global sub-decreasing returns to scale in free disposal hull technologies: definition, characterization and calculation. Eur J Oper Res 280(1):230–241

    Article  Google Scholar 

  93. O’Neill R, Sotkiewicz P, Hobbs B, Rothkopf M, Stewart W (2005) Efficient market-clearing prices in markets with nonconvexities. Eur J Oper Res 164(1):269–285

    Article  Google Scholar 

  94. Olesen O, Petersen N (2013) Imposing the regular ultra passum law in DEA models. Omega 41(1):16–27

    Article  Google Scholar 

  95. Olesen O, Ruggiero J (2014) Maintaining the regular ultra passum law in data envelopment analysis. Eur J Oper Res 235(3):798–809

    Article  Google Scholar 

  96. Parkan C (1987) Measuring the efficiency of service operations: an application to bank branches. Eng Cost Prod Econ 12(1–4):237–242

    Article  Google Scholar 

  97. Petersen N (1990) Data envelopment analysis on a relaxed set of assumptions. Manag Sci 36(3):305–314

    Article  Google Scholar 

  98. Podinovski V (2004a) Local and global returns to scale in performance measurement. J Oper Res Soc 55(2):170–178

    Article  Google Scholar 

  99. Podinovski V (2004b) On the linearisation of reference technologies for testing returns to scale in FDH models. Eur J Oper Res 152(3):800–802

    Article  Google Scholar 

  100. Podinovski V (2005) Selective convexity in DEA models. Eur J Oper Res 161(2):552–563

    Article  Google Scholar 

  101. Portela M, Borges P, Thanassoulis E (2003) Finding closest targets in non-oriented DEA models: the case of convex and non-convex technologies. J Prod Anal 19(2–3):251–269

    Article  Google Scholar 

  102. Post T (2001) Estimating Non-convex production sets – imposing convex input sets and output sets in data envelopment analysis. Eur J Oper Res 131(1):132–142

    Article  Google Scholar 

  103. Ravelojaona P (2019) On Constant Elasticity of Substitution – Constant Elasticity of Transformation directional distance functions. Eur J Oper Res 272(2):780–791

    Article  Google Scholar 

  104. Ray S (2004) Data envelopment analysis: theory and techniques for economics and operations research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  105. Rockafellar R, Wets R-B (1998) Variational analysis. Springer, Berlin

    Book  Google Scholar 

  106. Romer P (1990) Are nonconvexities important for understanding growth? Am Econ Rev 80(2):97–103

    Google Scholar 

  107. Samuelson PA, Swamy S (1974) Invariant economic index numbers and canonical duality: survey and synthesis. Am Econ Rev 64(4):566–593

    Google Scholar 

  108. Scarf H (1977) An observation on the structure of production sets with indivisibilities. Proc Natl Acad Sci 74(9):3637–3641

    Article  Google Scholar 

  109. Scarf H (1981a) Production sets with indivisibilities Part I: generalities. Econometrica 49(1):1–32

    Article  Google Scholar 

  110. Scarf H (1981b) Production sets with indivisibilities Part II: the case of two activities. Econometrica 49(2):395–423

    Article  Google Scholar 

  111. Scarf H (1986a) Neighborhood systems for production sets with indivisibilities. Econometrica 54(3):507–532

    Article  Google Scholar 

  112. Scarf H (1986b) Testing for optimality in the absence of convexity. In: Heller W, Starr R, Starrett S (eds) Social choice and public decision making: essays in honor of Kenneth J. Arrow, vol I. Cambridge University Press, Cambridge, pp 117–134

    Chapter  Google Scholar 

  113. Scarf H (1994) The allocation of resources in the presence of indivisibilities. J Econ Perspect 8(4):111–128

    Article  Google Scholar 

  114. Seiford M, Zhu J (1999) An investigation of returns to scale in data envelopment analysis. Omega 27(1):1–11

    Article  Google Scholar 

  115. Seitz W (1971) Productive efficiency in the steam-electric generating industry. J Polit Econ 79(4):878–886

    Article  Google Scholar 

  116. Shephard R (1970) Theory of cost and production functions. Princeton University Press, Princeton

    Google Scholar 

  117. Shephard R (1974) Indirect production functions. Verlag Anton Hain, Meisenheim am Glam

    Google Scholar 

  118. Soleimani-damaneh M (2013) An enumerative algorithm for solving nonconvex dynamic DEA models. Optim Lett 7(1):101–115

    Article  Google Scholar 

  119. Soleimani-damaneh M, Mostafaee A (2015) Identification of the anchor points in FDH models. Eur J Oper Res 246(3):936–943

    Article  Google Scholar 

  120. Stroobants J, Bouckaert G (2014) Benchmarking local public libraries using non-parametric frontier methods: a case study of Flanders. Libr Inf Sci Res 36(3–4):211–224

    Article  Google Scholar 

  121. Tavakoli I, Mostafaee A (2019) Free disposal hull efficiency scores of units with network structures. Eur J Oper Res 277(3):1027–1036

    Article  Google Scholar 

  122. Tulkens H (1993) On FDH Efficiency analysis: some methodological issues and applications to retail banking, courts, and urban transit. J Prod Anal 4(1–2):183–210

    Article  Google Scholar 

  123. Varian H (1984) The nonparametric approach to production analysis. Econometrica 52(3):579–597

    Article  Google Scholar 

  124. Viton P (2007) Cost efficiency in US air carrier operations, 1970–1984: a comparative study. Int J Transp Econ 34(3):369–401

    Google Scholar 

  125. Walden J, Tomberlin D (2010) Estimating fishing vessel capacity: a comparison of nonparametric frontier approaches. Mar Res Econ 25(1):23–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiaan Kerstens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Briec, W., Kerstens, K., Van de Woestyne, I. (2022). Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review*. In: Ray, S.C., Chambers, R.G., Kumbhakar, S.C. (eds) Handbook of Production Economics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3455-8_15

Download citation

Publish with us

Policies and ethics