Skip to main content

Electrocardiographic Markers of Torsadogenicity

  • Living reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Torsades de pointes is a potentially lethal ventricular tachycardia which has been associated with QT interval prolongation. Although several sophisticated methods have been used in the assessment of proarrhythmic risk, the standard 12-lead surface electrocardiogram still represents the most common and familiar clinical tool. The risk of arrhythmias in several pathological conditions, as well as the torsadogenic potential of drugs, can be assessed noninvasively by the use of electrocardiographic markers. Even though the QT interval duration is the most well known, a few other more accurate markers, such as JT duration, QT dispersion and variability, Tpeak-to-Tend duration, T wave alternans, TRIaD, and beat-to-beat variability of repolarization, have gradually been introduced into clinical practice and have partly replaced or complemented the classic QT interval duration approach. All these electrocardiographic markers are mainly used for noninvasive risk stratification of torsades de pointes and sudden cardiac death in patients with arrhythmogenic syndromes, such as long QT and Brugada syndrome, and also for assessment of new drugs’ arrhythmogenic potency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP:

Action potential

APD:

Action potential duration

Bpm:

Beats per minute

BVR:

Beat-to-beat variability of repolarization

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

ECG:

Electrocardiogram

HR:

Heart rate

ICD:

Implantable cardioverter defibrillator

IKr:

Rapid component of delayed rectifier K+ current

LQTS:

Long QT syndrome

MTWA:

Microvolt T wave alternans

QTd:

QT dispersion

QTVI:

QT variability index

SQTS:

Short QT syndrome

STEMI:

Myocardial infarction with ST elevation

STV:

Short-term variability

TdP:

Torsades de pointes

TDR:

Transmural dispersion of repolarization

Tp-e:

Tpeak-to-Tend interval

TRIaD:

Triangulation, reverse use dependence, instability, and dispersion of repolarization

TWA:

T wave alternans

References

  • Antzelevitch C. T peak-Tend interval as an index of transmural dispersion of repolarization. Eur J Clin Invest. 2001;31:555–7.

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C. Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm. 2005;2(2 Suppl):S9–15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007;293:H2024–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antzelevitch C. Drug-induced spatial dispersion of repolarization. Cardiol J. 2008;15:100–21.

    PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C, Burashnikov A. Mechanisms of arrhythmogenesis. In: Podrid PJ, Kowey PR, editors. Cardiac arrhythmia: mechanisms, diagnosis, and management. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 65.

    Google Scholar 

  • Antzelevitch C, Shimizu W, Yan GX, et al. Cellular basis for QT dispersion. J Electrocardiol. 1998;30(Suppl):168–75.

    Article  PubMed  Google Scholar 

  • Balaji S, Ellenby M, McNames J, et al. Update on intensive care ECG and cardiac event monitoring. Card Electrophysiol Rev. 2002;6:190–5.

    Article  PubMed  Google Scholar 

  • Bednar MM, Harrigan EP, Anziano RJ, et al. The QT interval. Prog Cardiovasc Dis. 2001;43(5 Suppl 1):1–45.

    CAS  PubMed  Google Scholar 

  • Berger RD. QT variability. J Electrocardiol. 2003;36(Suppl):83–7.

    Article  PubMed  Google Scholar 

  • Berger RD. QT interval variability. Is it a measure of autonomic activity? J Am Coll Cardiol. 2009;54:851–2.

    Article  PubMed  Google Scholar 

  • Bjerregaard P, Gussak I. Short QT syndrome. In: Gussak I, Antzelevitch C, Wilde AAM, Friedman PA, Ackerman MJ, Shen W, editors. Electrical diseases of the heart. Genetics, mechanisms, treatment, prevention. London: Springer-Verlag London Limited; 2008. p. 554–63.

    Google Scholar 

  • Bluzaite I, Brazdzionyte J, Zaliūnas R, et al. QT dispersion and heart rate variability in sudden death risk stratification in patients with ischemic heart disease. Medicina (Kaunas). 2006;42:450–4.

    Google Scholar 

  • Cutler MJ, Rosenbaum DS. Risk stratification for sudden cardiac death: is there a clinical role for T wave alternans? Heart Rhythm. 2009;6(8 Suppl):S56–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dobson CP, Kim A, Haigney M. QT variability index. Prog Cardiovasc Dis. 2013;56:186–94.

    Article  PubMed  Google Scholar 

  • Floré V, Willems R. T-wave alternans and beat-to-beat variability of repolarization: pathophysiological backgrounds and clinical relevance. Acta Cardiol. 2012;67:713–8.

    PubMed  Google Scholar 

  • Garcia EV, Pastore CA, Samesima N, et al. T-wave alternans: clinical performance, limitations and analysis methodologies. Arq Bras Cardiol. 2011;96:e53–61.

    Article  PubMed  Google Scholar 

  • Garson Jr A. How to measure the QT interval – what is normal? Am J Cardiol. 1993;72:14B–6.

    Article  PubMed  Google Scholar 

  • Gupta A, Lawrence AT, Krishnan K, et al. Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J. 2007;153:891–9.

    Article  PubMed  Google Scholar 

  • Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, Yan GX. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41:567–74.

    Article  PubMed  Google Scholar 

  • Haugaa KH, Edvardsen T, Amlie JP. Prediction of life-threatening arrhythmias – still an unresolved problem. Cardiology. 2011;118:129–37.

    Article  PubMed  Google Scholar 

  • Higham PD, Campbell RW. QT dispersion. Br Heart J. 1994;71:508–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hlaing T, DiMino T, Kowey PR, et al. ECG repolarization waves: their genesis and clinical implications. Ann Noninvasive Electrocardiol. 2005;10:211–23.

    Article  PubMed  Google Scholar 

  • Hoffmann P, Warner B. Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J Pharmacol Toxicol Methods. 2006;53:87–105.

    Article  CAS  PubMed  Google Scholar 

  • Hondeghem LM. Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol. 2006;17:337–40.

    Article  PubMed  Google Scholar 

  • Hondeghem LM. Use and abuse of QT and TRIaD in cardiac safety research: importance of study design and conduct. Eur J Pharmacol. 2008;584:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Isbister GK, Page CB. Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Br J Clin Pharmacol. 2013;76:48–57.

    Article  PubMed Central  PubMed  Google Scholar 

  • Issa Z, Miller JM, Zipes DP. Ventricular arrhythmias in inherited channelopathies. In: Issa Z, Miller JM, Zipes DP, editors. Clinical arrhythmology and electrophysiology: a companion to Braunwald’s heart disease. 2nd ed. Philadelphia: Elsevier-Saunders; 2012. p. 655–66.

    Google Scholar 

  • Kittnar O, Lechmanová M. QT interval dispersion. Cesk Fysiol. 2001;50:125–33.

    CAS  PubMed  Google Scholar 

  • Krause U, Gravenhorst V, Kriebel T, et al. A rare association of long QT syndrome and syndactyly: Timothy syndrome (LQT 8). Clin Res Cardiol. 2011;100:1123–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malik M, Batchvarov VN. Measurement, interpretation and clinical potential of QT dispersion. J Am Coll Cardiol. 2000;36:1749–66.

    Article  CAS  PubMed  Google Scholar 

  • Merchant FM, Sayadi O, Moazzami K, et al. T-wave alternans as an arrhythmic risk stratifier: state of the art. Curr Cardiol Rep. 2013;15:398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moss AJ. Measurement of the QT interval and the risk associated with QTc interval prolongation: a review. Am J Cardiol. 1993;72:23B–5.

    Article  CAS  PubMed  Google Scholar 

  • Narayan SM. T-wave alternans and the susceptibility to ventricular arrhythmias. J Am Coll Cardiol. 2006;47:269–81.

    Article  PubMed  Google Scholar 

  • Niemeijer MN, van den Berg ME, Eijgelsheim M, et al. Short-term QT variability markers for the prediction of ventricular arrhythmias and sudden cardiac death: a systematic review. Heart. 2014. doi:10.1136/heartjnl-2014-305671 [Epub ahead of print].

    PubMed  Google Scholar 

  • Nieminen T, Verrier RL. Usefulness of T-wave alternans in sudden death risk stratification and guiding medical therapy. Ann Noninvasive Electrocardiol. 2010;15:276–88.

    Article  PubMed  Google Scholar 

  • Oosterhoff P, Oros A, Vos MA. Beat-to-beat variability of repolarization: a new parameter to determine arrhythmic risk of an individual or identify proarrhythmic drugs. Anadolu Kardiyol Derg. 2007;7 Suppl 1:73–8.

    PubMed  Google Scholar 

  • Pickham D, Hasanien AA. Measurement and rate correction of the QT interval. AACN Adv Crit Care. 2013;24:90–6.

    Article  PubMed  Google Scholar 

  • Salik J, Muskin PR. Consideration of the JT interval rather than the QT interval. Psychosomatics. 2013;54:502.

    Article  PubMed  Google Scholar 

  • Sgarbossa EB, Wagner G. Electrocardiography; Normal electrocardiographic waveforms. In: Topol EJ, editor. Textbook of cardiovascular medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 985.

    Google Scholar 

  • Shah RR. Drug-induced QT, dispersion: does it predict the risk of torsade de pointes? J Electrocardiol. 2005;38:10–8.

    Article  PubMed  Google Scholar 

  • Shah RR, Hondeghem LM. Refining detection of drug – induced proarrhythmia: QT interval and TRIaD. Heart Rhythm. 2005;2:758–72.

    Article  PubMed  Google Scholar 

  • Spodick DH. Reduction of QT-interval imprecision and variance by measuring the JT interval. Am J Cardiol. 1992;70:103.

    Article  CAS  PubMed  Google Scholar 

  • Sredniawa B, Musialik-Łydka A, Pasyk S. Measurement dispersion of the QT interval and its significance in different diseases. Pol Merkur Lekarski. 2001;11:52–5.

    CAS  PubMed  Google Scholar 

  • Staikou C, Chondrogiannis K, Mani A. Perioperative management of hereditary arrhythmogenic syndromes. Br J Anaesth. 2012;108:7307–44.

    Google Scholar 

  • Staikou C, Stamelos M, Stavroulakis E. Impact of anaesthetic drugs and adjuvants on ECG markers of torsadogenicity. Br J Anaesth. 2014;112:217–30.

    Article  CAS  PubMed  Google Scholar 

  • Surawicz B. Will QT, dispersion play a role in clinical decision-making? J Cardiovasc Electrophysiol. 1996;7:777–84.

    Article  CAS  PubMed  Google Scholar 

  • Tereshchenko LG, Berger RD. Towards a better understanding of QT interval variability. Ther Adv Drug Saf. 2011;2:245–51.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomsen MB, Matz J, Volders PG, et al. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther. 2006;112:150–70.

    Article  CAS  PubMed  Google Scholar 

  • Varkevisser R, Wijers SC, van der Heyden MA, et al. Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo. Heart Rhythm. 2012;9:1718–26.

    Article  PubMed  Google Scholar 

  • Vecht R, Gatzoulis MA, Peters N. ECG in congenital heart disease. In: Vecht R, Gatzoulis MA, Peters N, editors. ECG diagnosis in clinical practice. 2nd ed. London: Springer-Verlag London Limited; 2009. p. 219.

    Google Scholar 

  • Verrier RL, Malik M. Clinical applications of T-wave alternans assessed during exercise stress testing and ambulatory ECG monitoring. J Electrocardiol. 2013;46:585–90.

    Article  PubMed  Google Scholar 

  • Verrier RL, Klingenheben T, Malik M, et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility – consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;58:1309–24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan GX, Lankipalli RS, Burke JF, et al. Ventricular repolarization components on the electrocardiogram: cellular basis and clinical significance. J Am Coll Cardiol. 2003;42:401–9.

    Article  PubMed  Google Scholar 

  • Zhang X, Ma LL, Yao DK, et al. Prediction values of T wave alternans for sudden cardiac death in patients with chronic heart failure: a brief review. Congest Heart Fail. 2011;17:152–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chryssoula Staikou .

Editor information

Editors and Affiliations

Definitions

Brugada syndrome

It is an inherited cardiac channelopathy which follows an autosomal dominant mode of transmission. Patients with Brugada syndrome are at risk of sudden cardiac death due to polymorphic ventricular tachycardia and ventricular fibrillation.

Catecholaminergic polymorphic ventricular tachycardia (CPVT)

It is an inherited cardiac disease following an autosomal dominant mode of transmission. It is associated with adrenergic-dependent ventricular tachyarrhythmias. Patients with CPTV are at risk of ventricular tachycardia, ventricular fibrillation, and sudden cardiac death.

Long QT syndrome

It is a congenital or acquired arrhythmogenic disorder characterized by dysfunction of cardiac ion channels and prolongation of QT interval on the ECG. The congenital form is inherited via an autosomal dominant or recessive pattern. The syndrome is characterized by a high risk of torsades de pointes, ventricular fibrillation, and sudden cardiac death.

New York Heart Association (NYHA) classification

A functional classification for the patients with heart disease. It includes four categories according to the severity of heart failure symptoms and consequent limitation in ordinary physical activity: Class I no symptoms or activity limitation, Class II mild symptoms/activity limitation, Class III marked symptoms/activity limitation, Class IV symptoms even at rest/severe activity limitation.

Short QT syndrome

It is an inherited arrhythmogenic disease following an autosomal dominant mode of transmission. It is characterized by a short QT interval on the ECG, atrial or ventricular arrhythmias – such as ventricular tachycardia and fibrillation – and sudden cardiac death.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Staikou, C., Stavroulakis, E. (2015). Electrocardiographic Markers of Torsadogenicity. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7741-5_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7741-5_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7741-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics