Skip to main content

Biomarkers of Coronary Plaque Composition and Vulnerability

  • Living reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

An important challenge to facing the epidemic of cardiovascular disease is the unpredictable nature of acute coronary events. Therefore, substantial research has been recently conducted in order to develop new methods to identify subjects at risk or atheromatous plaque that are prone to produce sudden major coronary events. Over the past two decades, the concept of “vulnerable plaque” has gained attention as a paradigm to improve risk stratification and potentially lead to the discovery of novel markers of risk to prevent cardiovascular disease.

We reviewed biochemical markers that have been investigated to date for the identification of coronary atherosclerotic plaque composition and early detection of their vulnerability. C-reactive protein and matrix metalloproteinases are the most commonly studied, but also novel biomarkers reflecting a variety of pathophysiologic pathways such as ischemia, inflammation, vascular dysfunction, biomechanical stress, hemostasis, and lipid metabolism have been reported to be potentially associated with increased risk of coronary events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

CRP:

C-reactive protein

CVD:

Cardiovascular disease

LDL:

Low-density lipoprotein

MACE:

Major adverse cardiovascular events

MI:

Myocardial infarction

MMP:

Matrix metalloproteinases

PCI:

Percutaneous coronary intervention

TCFA:

Thin-cap fibroatheromas

VSMC:

Vascular smooth muscle cells

References

  • Alsheikh-Ali AA, Kitsios GD, Balk EM, et al. The vulnerable atherosclerotic plaque: scope of the literature. Ann Intern Med. 2010;153:387–95.

    Article  PubMed  Google Scholar 

  • Ambrose JA, Winters SL, Arora RR, et al. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol. 1986;7:472–8.

    Article  CAS  PubMed  Google Scholar 

  • Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”. Transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846–55.

    Article  PubMed  Google Scholar 

  • Battes LC, Cheng JM, Oemrawsingh RM, et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: results from the ATHEROREMO-IVUS study. Atherosclerosis. 2014;236:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Bayturan O, Tuzcu EM, Nicholls SJ, et al. Attenuated plaque at nonculprit lesions in patients enrolled in intravascular ultrasound atherosclerosis progression trials. JACC Cardiovasc Interv. 2009;2:672–8.

    Article  PubMed  Google Scholar 

  • Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation. 1999;99:855–60.

    Article  CAS  PubMed  Google Scholar 

  • Cannon CP, Braunwald E, McCabe CH, Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.

    Article  CAS  PubMed  Google Scholar 

  • Daugherty A, Webb NR, Rateri DL, King VL. Thematic review series: the immune system and atherogenesis: cytokine regulation of macrophage functions in atherogenesis. J Lipid Res. 2005;46:1812–22.

    Article  CAS  PubMed  Google Scholar 

  • Deftereos S, Giannopoulos G, Kossyvakis C, et al. Association of soluble tumour necrosis factor-related apoptosis-inducing ligand levels with coronary plaque burden and composition. Heart. 2012;98:214–8.

    Article  CAS  PubMed  Google Scholar 

  • Drakopoulou M, Toutouzas K, Stefanadi E, et al. Association of inflammatory markers with angiographic severity and extent of coronary artery disease. Atherosclerosis. 2009;206:335–9.

    Article  CAS  PubMed  Google Scholar 

  • Eggers KM, Kempf T, Allhoff T, et al. Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur Heart J. 2008;29:2327–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenhardt SU, Habersberger J, Murphy A, et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res. 2009;105:128–37.

    Article  CAS  PubMed  Google Scholar 

  • Ellims AH, Wong G, Weir JM, et al. Plasma lipidomic analysis predicts non-calcified coronary artery plaque in asymptomatic patients at intermediate risk of coronary artery disease. Eur Heart J Cardiovasc Imaging. 2014;15:908–16.

    Article  PubMed  Google Scholar 

  • Eriksson EE. Mechanisms of leukocyte recruitment to atherosclerotic lesions: future prospects. Curr Opin Lipidol. 2004;15:553–8.

    Article  CAS  PubMed  Google Scholar 

  • Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010;122:2505–13.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Lavi I, Tzang O, et al. Intracoronary monocyte chemoattractant protein 1 and vascular endothelial growth factor levels are associated with necrotic core, calcium and fibrous tissue atherosclerotic plaque components: an intracoronary ultrasound radiofrequency study. Cardiology. 2012;123:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2493–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaspardone A, Crea F, Versaci F, et al. Predictive value of C-reactive protein after successful coronary-artery stenting in patients with stable angina. Am J Cardiol. 1998;82:515–8.

    Article  CAS  PubMed  Google Scholar 

  • Giroud D, Li JM, Urban P, et al. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992;69:729–32.

    Article  CAS  PubMed  Google Scholar 

  • Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9:1317–23.

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  • Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong YJ, Jeong MH, Choi YH, et al. Plaque characteristics in culprit lesions and inflammatory status in diabetic acute coronary syndrome patients. JACC Cardiovasc Imaging. 2009;2:339–49.

    Article  PubMed  Google Scholar 

  • Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol. 2006;48:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Ji SR, Ma L, Bai CJ, et al. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. FASEB J. 2009;23:1806–16.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Devel L, Czarny B, et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol. 2011;31:528–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly CR, Weisz G, Maehara A, et al. Relation of C-reactive protein levels to instability of untreated vulnerable coronary plaques (from the PROSPECT study). Am J Cardiol. 2014;114:376–83.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Hong MK, Park DW, et al. Impact of plaque characteristics analyzed by intravascular ultrasound on long-term clinical outcomes. Am J Cardiol. 2009;103:1221–6.

    Article  PubMed  Google Scholar 

  • Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kones R. Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease a perspective. Drug Des Devel Ther. 2010;4:383–413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kones R. Primary prevention of coronary heart disease: integration of new data, evolving views, revised goals, and role of rosuvastatin in management. A comprehensive survey. Drug Des Devel Ther. 2011;5:325–80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kubo T, Matsuo Y, Hayashi Y, et al. High-sensitivity C-reactive protein and plaque composition in patients with stable angina pectoris: a virtual histology intravascular ultrasound study. Coron Artery Dis. 2009;20:531–5.

    Article  PubMed  Google Scholar 

  • Kuller LH, Tracy RP, Shaten J, Meilahn EN. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol. 1996;144:537–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Lee CW, Hong MK, et al. Change of multiple complex coronary plaques in patients with acute myocardial infarction: a study with coronary angiography. Am Heart J. 2004;147:281–6.

    Article  PubMed  Google Scholar 

  • Lewis GD, Wei R, Liu E, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest. 2008;118:3503–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  • Libby P. Collagenases and cracks in the plaque. J Clin Invest. 2013;123:3201–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Nahrendorf M, Pittet MJ, et al. Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. Circulation. 2008;117:3168–70.

    Article  PubMed  Google Scholar 

  • Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    Article  CAS  PubMed  Google Scholar 

  • Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331:417–24.

    Article  CAS  PubMed  Google Scholar 

  • McCann CJ, Glover BM, Menown IB, et al. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur Heart J. 2008;29:2843–50.

    Article  CAS  PubMed  Google Scholar 

  • Morrow DA, Cannon CP, Jesse RL, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation. 2007;115:e356–75.

    Article  PubMed  Google Scholar 

  • Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  • Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–43.

    Article  CAS  PubMed  Google Scholar 

  • Musunuru K, Kral BG, Blumenthal RS, et al. The use of high-sensitivity assays for C-reactive protein in clinical practice. Nat Clin Pract Cardiovasc Med. 2008;5:621–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  • Newby AC. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biol. 2015. doi:10.1016/j.matbio.2015.01.015.

    PubMed  Google Scholar 

  • Norata GD, Marchesi P, Pulakazhi Venu VK, et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation. 2009;120:699–708.

    Article  CAS  PubMed  Google Scholar 

  • Ohtani T, Ueda Y, Mizote I, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: detection of vulnerable patients by angioscopy. J Am Coll Cardiol. 2006;47:2194–200.

    Article  PubMed  Google Scholar 

  • Puri R, Tuzcu EM, Nissen SE, et al. Exploring coronary atherosclerosis with intravascular imaging. Int J Cardiol. 2013;168:670–9.

    Article  PubMed  Google Scholar 

  • Quillard T, Tesmenitsky Y, Croce K, et al. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2464–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Granillo GA, Serruys PW, McFadden EP, et al. First-in-man prospective evaluation of temporal changes in coronary plaque composition by in vivo intravascular ultrasound radiofrequency data analysis: an Integrated Biomarker and Imaging Study (IBIS) substudy. EuroIntervention. 2005;1:282–8.

    PubMed  Google Scholar 

  • Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scirica BM. Acute coronary syndrome. Emerging tools for diagnosis and risk assessment. J Am Coll Cardiol. 2010;55:1403–15.

    Article  CAS  PubMed  Google Scholar 

  • Scirica BM, Cannon CP, Sabatine MS, et al. Concentrations of C-reactive protein and B-type natriuretic peptide 30 days after acute coronary syndromes independently predict hospitalization for heart failure and cardiovascular death. Clin Chem. 2009;55:265–73.

    Article  CAS  PubMed  Google Scholar 

  • Seifarth H, Schlett CL, Lehman SJ, et al. Correlation of concentrations of high-sensitivity troponin T and high-sensitivity C-reactive protein with plaque progression as measured by CT coronary angiography. J Cardiovasc Comput Tomogr. 2014;8:452–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005;2:401–7.

    Article  CAS  PubMed  Google Scholar 

  • Sluijter JP, Pulskens WP, Schoneveld AH, et al. Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic lesions: a study in human endarterectomy specimens pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms. Stroke. 2006;37:235–9.

    Article  CAS  PubMed  Google Scholar 

  • Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20:1177–8.

    Article  CAS  PubMed  Google Scholar 

  • Stone PH, Coskun AU, Yeghiazarians Y, et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol. 2003;18:458–70.

    Article  PubMed  Google Scholar 

  • Stone GW, Maehara A, Lansky AJ, PROSPECT Investigators, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  • Tomai F. C reactive protein and microvascular function. Heart. 2004;90:727–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomai F, Crea F, Gaspardone A, et al. Unstable angina and elevated C-reactive protein levels predict enhanced vasoreactivity of the culprit lesion. Circulation. 2001;104:1471–6.

    Article  CAS  PubMed  Google Scholar 

  • Tomai F, Ribichini F, Ghini AS, et al. Elevated C-reactive protein levels and coronary microvascular dysfunction in patients with coronary artery disease. Eur Heart J. 2005;26:2099–105.

    Article  CAS  PubMed  Google Scholar 

  • Van Mieghem CA, Bruining N, Schaar JA, et al. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology. Int J Cardiovasc Imaging. 2005;21:425–41.

    Article  PubMed  Google Scholar 

  • Versaci F, Gaspardone A, Tomai F, et al. Predictive value of C-reactive protein in patients with unstable angina pectoris undergoing coronary artery stent implantation. Am J Cardiol. 2000;85:92–5.

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  • Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients. Novel approaches to prevention of coronary events. Circulation. 2006;114:2390–411.

    Article  PubMed  Google Scholar 

  • Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116:1540–8.

    Article  PubMed  Google Scholar 

  • Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62:397–408.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Cliff WJ, Schoefl GI, et al. Coronary C-reactive protein distribution: its relation to development of atherosclerosis. Atherosclerosis. 1999;145:375–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Tomai .

Editor information

Editors and Affiliations

Definitions

Acute coronary syndrome

Any condition brought on by sudden, reduced blood flow to the heart

Culprit lesion

The coronary lesion involved in the initial myocardial infarction

Nonculprit lesion

Any lesion in the entire coronary tree outside the culprit lesion

Thin-cap fibroatheromas

Lesions with a fibrous cap <65 μm with macrophage infiltration (>25 cells/high-magnification field) and an underlying necrotic core

Vulnerable plaque

A kind of atheromatous plaque that is particularly unstable and prone to produce sudden major coronary events

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

De Luca, L., Tomai, F. (2015). Biomarkers of Coronary Plaque Composition and Vulnerability. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7741-5_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7741-5_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7741-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics