Skip to main content

Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot’s joints to an internal gait phasing variable. A second role is to induce a low-dimensional system, the zero dynamics, that captures the underactuated aspects of a robot’s model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Akbari Hamed, J.W Grizzle, Event-based stabilization of periodic orbits for underactuated 3-d bipedal robots with left-right symmetry. IEEE Trans. Robot. 30(2), 365–381 (2014)

    Google Scholar 

  2. K. Akbari Hamed, B.G. Buss, J.W. Grizzle, Continuous-time controllers for stabilizing periodic orbits of hybrid systems: application to an underactuated 3D bipedal robot, in 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Dec 2014, pp. 1507–1513

    Google Scholar 

  3. A.D. Ames, Human-inspired control of bipedal walking robots. IEEE Trans. Autom. Control, 59(5), 1115–1130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.D. Ames, AMBER-Lab (2016). https://www.youtube.com/user/ProfAmes

    Google Scholar 

  5. A.D. Ames, K. Galloway, K. Sreenath, J.W. Grizzle, Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 59(4), 876–891 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. B.G. Buss, Systematic Controller Design for Dynamic 3D Bipedal Robot Walking. PhD thesis, University of Michigan, Ann Arbor, May 2015

    Google Scholar 

  7. B.G. Buss, A. Ramezani, K. Akbari Hamed, B.A. Griffin, K.S. Galloway, J.W. Grizzle, Preliminary walking experiments with underactuated 3D bipedal robot MARLO, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Sept 2014, pp. 2529–2536

    Google Scholar 

  8. C. Byrnes, A. Isidori, Asymptotic stabilization of nonlinear minimum phase systems. IEEE Trans. Autom. Control 376, 1122–37 (1991)

    Article  MATH  Google Scholar 

  9. C. Chevallereau. Time scaling control for an underactuated biped robot. IEEE Trans. Robot. Autom. 19(2), 362–368 (2003)

    Article  Google Scholar 

  10. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas, J.W. Grizzle, RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  11. C. Chevallereau, D. Djoudi, and J.W. Grizzle, Stable bipedal walking with foot rotation through direct regulation of the Zero Moment Point. TRO 25(2), 390–401 (2008)

    Google Scholar 

  12. C. Chevallereau, J.W. Grizzle, C.-L. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Trans. Robot. 25(1), 37–50 (2009)

    Article  Google Scholar 

  13. H. Dai, R. Tedrake, Optimizing robust limit cycles for legged locomotion on unknown terrain, in 2012 IEEE 51st Annual Conference on Decision and Control (CDC), 2012, pp. 1207–1213

    Google Scholar 

  14. R.D. Gregg, High-performance control of a powered transfemoral prosthesis with amputee subjects (2016). https://www.youtube.com/watch?v=sl1IXs0j4Ww

    Google Scholar 

  15. R.D. Gregg, T. Lenzi, L.J. Hargrove, J.W. Sensinger, Virtual constraint control of a powered prosthetic leg: from simulation to experiments with transfemoral amputees. IEEE Trans. Robot. 30, 1455–1471 (2014)

    Article  Google Scholar 

  16. R.D. Gregg, E.J. Rouse, L.J. Hargrove, J.W. Sensinger, Evidence for a time-invariant phase variable in human ankle control. PLoS One 9(2), e89163 (2014)

    Google Scholar 

  17. B. Griffin, J.W. Grizzle, Nonholonomic virtual constraints for dynamic walking, in Preprint Submitted to IEEE Conference on Decision and Control, 2015

    Google Scholar 

  18. B. Griffin, J.W. Grizzle, Walking gait optimization for accommodation of unknown terrain height variations, in American Control Conference, 2015

    Google Scholar 

  19. J.W. Grizzle, Dynamic Leg Locomotion (2016) www.youtube.com/user/DynamicLegLocomotion

    Google Scholar 

  20. J.W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46, 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.W. Grizzle, C. Chevallereau, A. Ames, R. Sinnet, Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. K.A. Hamed, B.G. Buss, J.W. Grizzle, Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int. J. Robot. Res. 35(8), 977–999 (2016)

    Article  Google Scholar 

  23. A. Hereid, S. Kolathaya, M.S. Jones, J. Van Why, J.W. Hurst, A.D. Ames, Dynamic multi-domain bipedal walking with ATRIAS through SLIP based human-inspired control, in Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (ACM, 2014), pp. 263–272

    Google Scholar 

  24. J. Horn, J. Reher, Zhao, V. Paredes, A.D. Ames, AMPRO: translating robotic locomotion to a powered transfemoral prosthesis, in International Conference on Robotics and Automation, ICRA, May 2015

    Google Scholar 

  25. Y. Hürmüzlü, D.B. Marghitu, Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)

    Article  Google Scholar 

  26. J. Lack, M.J. Powell, A.D. Ames, Planar multi-contact bipedal walking using hybrid zero dynamics, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 2582–2588

    Google Scholar 

  27. I.R Manchester, Transverse dynamics and regions of stability for nonlinear hybrid limit cycles. IFAC Proc. 44(1), 6285–6290 (2011)

    Google Scholar 

  28. A.E. Martin, D.C. Post, J.P. Schmiedeler, The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control. Int. J. Robot. Res. 33(12), 1530–1543 (2014)

    Article  Google Scholar 

  29. B. Morris, J. W. Grizzle, A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots, in Proceedings of the 2005 IEEE International Conference on Decision and Control European Control Conference, Seville, 2005, pp. 4199–206

    Google Scholar 

  30. B. Morris, J. W. Grizzle, Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751–1764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-W. Park, A. Ramezani, J.W. Grizzle, A finite-state machine for accommodating unexpected large ground height variations in bipedal robot walking. IEEE Trans. Robot. 29(29), 331–345 (2013)

    Article  Google Scholar 

  32. I. Poulakakis, J.W. Grizzle, The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Trans. Autom. Control 54(8), 1779–1793 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.J. Powell, A.D. Ames, Hierarchical control of series elastic actuators through control lyapunov functions. Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, 2986–2992

    Google Scholar 

  34. M.J. Powell, H. Zhao, A.D. Ames, Motion primitives for human-inspired bipedal robotic locomotion: walking and stair climbing, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 543–549

    Google Scholar 

  35. A Ramezani, J.W. Hurst, K. Akbari Hamed, J.W. Grizzle, Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot. J. Dyn. Syst. Meas. Control 136(2), 0210112-1–0210112-12 (2014)

    Google Scholar 

  36. H. Razavi, A.M. Bloch, C. Chevallereau, J.W. Grizzle, Restricted discrete invariance and self-synchronization for stable walking of bipedal robots, in American Control Conference, 2015

    Google Scholar 

  37. N. Sadati, G.A. Dumont, K.A. Hamed, W.A. Gruver, Hybrid Control and Motion Planning of Dynamical Legged Locomotion. In: MengChu Zhou (ed.), IEEE Press Series on Systems Science and Engineering. (Wiley, 2012), 272 pages. ISBN: 978-1-118-31707-5

    Google Scholar 

  38. J. Schmiedeler, ERNIE robot walking with different feet (2016). https://www.youtube.com/watch?v=T2x3VvPaacA

    Google Scholar 

  39. C.-L. Shih, J.W. Grizzle, C. Chevallereau, From stable walking to steering of a 3D bipedal robot with passive point feet. Robotica 30(7), 1119–1130 (2012)

    Article  Google Scholar 

  40. A.S. Shiriaev, L.B. Freidovich, I.R. Manchester, Can we make a robot ballerina perform a pirouette? orbital stabilization of periodic motions of underactuated mechanical systems. Ann. Rev. Control 32(2), 200–211 (2008)

    Article  Google Scholar 

  41. A.S. Shiriaev, L.B. Freidovich, S.V. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Autom. Control 55(4), 893–906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)

    Article  Google Scholar 

  43. K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int. J. Robot. Res. 33, 988–1005 (2014)

    Article  Google Scholar 

  44. P. van Zutven, Control and Identification of Bipedal Humanoid Robots: Stability Analysis and Experiments. PhD thesis, University of Technology, Eindhoven, 2014

    Google Scholar 

  45. M. Vukobratović, B. Borovac, D. Surla, D. Stokic, Biped Locomotion (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  46. T. Wang, C. Chevallereau, D. Tlalolini, Stable walking control of a 3D biped robot with foot rotation. Robotica FirstView:1–20, (2014)

    Google Scholar 

  47. E.R. Westervelt, G. Buche, J.W. Grizzle, Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 24(6), 559–582 (2004)

    Article  Google Scholar 

  48. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.-H. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion. (CRC Press, Boca Raton, 2007)

    Google Scholar 

  49. E.R. Westervelt, J.W. Grizzle, D.E. Koditschek, Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Yang, E.R. Westervelt, A. Serrani, J.P. Schmiedeler, A framework for the control of stable aperiodic walking in underactuated planar bipeds. Auton. Robot. 27(3), 277–290 (2009)

    Article  Google Scholar 

  51. H.-H. Zhao, W.-L. Ma, A.D. Ames, M.B. Zeagler, Human-inspired multi-contact locomotion with AMBER2, in 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014, pp. 199–210

    Google Scholar 

Download references

Acknowledgements

The work of J.W. Grizzle has been generously supported by NSF grants EECS-1525006, ECCS-1343720, and CNS-1239037. The work of C. Chevallereau is supported by ANR Equipex Robotex project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessy W. Grizzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Grizzle, J.W., Chevallereau, C. (2017). Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_47-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics