Skip to main content

Motorische Entwicklung über die Lebensspanne

  • Living reference work entry
  • First Online:
Bewegung, Training, Leistung und Gesundheit

Zusammenfassung

Der erste Teil dieses Beitrages zur motorischen Entwicklung über die Lebensspanne ist der Darstellung von zentralen Begriffen, Theorien, Konzepten und wichtigen historischen Aspekten gewidmet, gefolgt von der Darstellung der Entwicklung der zentralnervösen, sensorischen und motorischen Systeme. Daran schließt sich die Beschreibung ausgewählter lokomotorischer, ballistischer und manipulativer Fertigkeiten an. Die Entwicklung aus der Perspektive einer motorisch-kognitiven Interaktion wird anhand von Forschungsarbeiten dargestellt, die einerseits Studien zum Einfluss von körperlicher Aktivität auf die kognitive Leistungsfähigkeit umfassen und anderseits das Feld „Embodied Cognition“ berücksichtigen. Anstatt die motorische Entwicklung durch kognitive Prozesse zu erklären, wird aus dieser Perspektive die motorische Entwicklung als treibende Kraft und mit untermauerndem Einfluss auf die Entwicklung der kognitiven Prozesse verstanden. Der Einfluss der motorische Entwicklung auf andere Entwicklungsbereiche, wie z. B. soziale und kognitive Fähigkeiten wird zunehmend auch bei Kindern, die sich atypisch entwickeln, in den Fokus genommen. Diese motorischen (und auch kognitiven Defizite) werden am Beispiel der umschriebenen Entwicklungskoordinationsstörung (Developmental Coordination Disorder) dargestellt.

Dieser Beitrag ist Teil der Sektion Sportmotorik, herausgegeben von den Teilherausgebern Alfred Effenberg und Gerd Schmitz, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

Teile von Abschn. 3 finden sich ähnlich auch in Hossner, E., Müller, H. & Voelcker-Rehage, C. (2013). Koordination sportlicher Bewegungen – Sportmotorik. In M. Krüger & A. Güllich (Hrsg.), Bachelor-Kurs Sport. Ein Lehrbuch für das Studium der Sportwissenschaft (S. 211–267). Heidelberg: Springer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Adolph, K. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70, 141–164.

    Article  PubMed  Google Scholar 

  • Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and shortterm memory tasks. Perceptual and Motor Skills, 118(1), 63–72.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2013). DSM 5 Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association.

    Book  Google Scholar 

  • Anderson, D. I., Campos, J. J., Witherington, D. C., Dahl, A., Rivera, M., He, M., Uchiyama, I., & Barbu-Roth, M. (2013). The role of locomotion in psychological development. Frontiers in Psychology, 4, 440. https://doi.org/10.3389/fpsyg.2013.00440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayres, A. J. (1989). Sensory integration and praxis test. Torence: Sensory IntegrationInternational.

    Google Scholar 

  • Barella, L. A., Etnier, J. L., & Chang, Y. K. (2010). The immediate and delayed effects of an acute bout of exercise on cogni-tive performance of healthy older adults. Journal of Aging and Physical Activity, 18(1), 87–98.

    Article  PubMed  Google Scholar 

  • Barnett, A., & Hill, E. (2019). Understanding motor behaviour in Developmental Coordination Disorder. New York: Routledge.

    Google Scholar 

  • Belghali, M., Chastan, N., Cignetti, F., Davenne, D., & Decker, L. M. (2017). Loss of gait control assessed by cognitive-motor dual-tasks: pros and cons in detecting people at risk of developing Alzheimer’s and Parkinson’s diseases. GeroScience, 39(3), 305–329. https://doi.org/10.1007/s11357-017-9977-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank, R., Smits-Engelsman, B., Polatajko, H., & Wilson, P. (2017). European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Developmental Medicine & Child Neurolology, 54(1), 54–93.

    Article  Google Scholar 

  • Bloomfield, J., Elliott, B., & Davies, S. (1979). Development of the soccer kick: A cinematographical analysis. Journal of Human Movement Studies, 5, 152–159.

    Google Scholar 

  • Bo, J., Contreras-Vidal, J. L., Kagerer, F. A., & Clark, J. E. (2006). Effects of increased complexity of visuomotor transformations on children’s arm movements. Human Movement Science, 25, 553–567.

    Article  CAS  PubMed  Google Scholar 

  • Bornstein, M. H., Hahn, C. S., & Suwalsky, J. T. (2013). Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychological Science, 24(10), 1906–1917.

    Article  PubMed  Google Scholar 

  • Borstelmann, L. J. (1983). Children before psychology. In W. Kessen (Hrsg.), Handbook of child psychology: Vol. 1. History, theory, and methods (4. Aufl., S. 1–140). New York: Wiley.

    Google Scholar 

  • Brant, L. J., & Fozard, J. L. (1990). Age changes in pure-tone hearing thresholds in a longitudinal study of normal aging. Journal of the Acoustical Society of America, 88, 813–820.

    Article  CAS  PubMed  Google Scholar 

  • Budde, H., Voelcker-Rehage, C., Pietrabyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Budde, H., Brunelli, A., Machado, S., Velasques, B., Ribeiro, P., Arias-Carrion, O., & Voelcker-Rehage, C. (2012). Intermittent maximal exercise improves attentional performance only in physically active students. Archives of Medical Research, 43(2), 125–131.

    Article  PubMed  Google Scholar 

  • Burton, A. W., & Rodgerson, R. W. (2003). The development of throwing behavior. In G. Savelsbergh, K. Davids, J. van der Kamp & S. Bennett (Hrsg.), Development of movement coordination in children: Applications in the field of ergonomics, health sciences and sport (S. 225–240). London: Routledge.

    Google Scholar 

  • Bustamante, E. E., Williams, C. F., & Davis, C. L. (2016). Physical activity interventions for neurocognitive and academic performance in overweight and obese youth: A systematic review. Pediatric Clinics of North America, 63(3), 459–480.

    Google Scholar 

  • Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149–219.

    Google Scholar 

  • Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241–257.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, D. L., Schieve, L. A., Devine, O., & Drews-Botsch, C. (2014). Socioeconomic status, child enrichment factors, and cognitive performance among preschool-age children: Results from the Follow-Up of Growth and Development Experiences study. Research in Developmental Disabilities, 35, 1789–1801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, J. E. (1982). Developmental differences in response processing. Journal of Motor Behavior, 14(3), 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. E., & Metcalfe, J. S. (2002). The mountain of motor development: A metaphor. In J. E. Clark & J. H. Humphrey (Hrsg.), Motor development: Reserch and reviews, volume 2 (S. 163–190). Reston: National Associotion for Sport and Physical Education.

    Google Scholar 

  • Clark, J. E., Whitall, J., & Phillips, S. J. (1988). Human interlimb coordination: The first 6 months of independent walking. Developmental Psychobiology, 21(5), 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, H. H., & Wickens, J. S. (1962). Maturity, structural, strength and motor ability growth curves of boys 9–15 years of age. Research Quarterly, 33(1), 26–39.

    Google Scholar 

  • Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.

    Article  PubMed  Google Scholar 

  • Connolly, K. (Hrsg.). (1970). Mechanisms of motor skill development. London: Academic.

    Google Scholar 

  • De Meester, A., Barnett, L.M., Brian, A. et al. (2020). The relationship between actual and üerceived motor competence in children, adolescents and young adults: A systematic review and meta-analysis. Sports Medicine, 50, 2001–2049.

    Google Scholar 

  • Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53–64.

    Article  PubMed  Google Scholar 

  • Effenberg, A. O. (2004). Synergien der Sinne für die Bewegungsregulation. Frankfurt a. M.: Lang.

    Google Scholar 

  • Fleishman, E. A., & Quaintance, M. K. (1984). Taxonomies of human performance: The description of human tasks. New York: Academic.

    Google Scholar 

  • Gallahue, D. J., & Ozmun, J. C. (2002). Understanding motor development. Boston: McGraw-Hill.

    Google Scholar 

  • Gesell, A. (1928). Infancy and human growth. New York: Macmillan.

    Book  Google Scholar 

  • Getchell, N., Schott, N., & Brian, A. (2020). Motor development research: Designs, analyses, and future directions. Journal of Motor Learning and Development, 8(2), 410–437.

    Article  Google Scholar 

  • Golenia, L., Schoemaker, M. M., Otten, E., Mouton, L. J., & Bongers, R. M. (2018). Development of reaching during mid-childhood from a developmental systems perspective. PloS One, 13(2), e0193463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodway, J. D., & Rudisill, M. E. (1997). Perceived physical competence and actual motor skill competence of African American preschool children. Adapted Physical Activity Quarterly, 14(4), 314–326.

    Article  Google Scholar 

  • Groen, S. E., de Blécourt, A. C. E., Postema, K., & Hadders-Algra, M. (2005). General movements in early infancy predict neuromotor development at 9 to 12 years of age. Developmental Medicine & Child Neurology, 47, 731–738.

    Article  Google Scholar 

  • Gromeier, M., Koester, D., & Schack, T. (2017). Gender differences in motor skills of the overarm throw. Frontiers in Psychology, 8, 212. https://doi.org/10.3389/fpsyg.2017.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadders-Algra, M. (2004). General movements: A window for early identification of children at high risk for developmental disorders. Journal of Pediatrics, 145, S12–S18.

    Article  PubMed  Google Scholar 

  • Hadders-Algra, M., & Groothuis, A. M. (1999). Quality of general movements in infancy is related to neurological dysfunction, ADHD, and aggressive behaviour. Developmental Medicine & Child Neurology, 41, 381–391.

    Article  CAS  Google Scholar 

  • Halverson, H. M. (1931). An experimental study of prehension in infants by means of systematic cinema records. Genetic Psychology Monographs, 10, 107–286.

    Google Scholar 

  • Halverson, L. E. (1966). Development of motor patterns in young children. Quest, 6(1), 44–53.

    Article  Google Scholar 

  • Halverson, L. E., Roberton, M. A., & Langendorfer, S. (1982). Development of the overarm throw: Movement and ball velocity changes by seventh grade. Research Quarterly Exercise Sport, 53, 198–205.

    Article  Google Scholar 

  • Haubenstricker, J., Branta, C., & Seefeldt, V. (1983). Preliminary validation of developmental sequences for throwing and catching. Paper presented at the annual conference of the North American Society for the Psychology of Sport and Physical Activity. East Lansing.

    Google Scholar 

  • Haug, H. (1986). Die Alterung der menschlichen Hirnrinde. Welche Aspekte kann die quantitative Morphologie für die Funktion geben? Geriatrics-Pregeriatrics-Rehabilitation, 2(4), 79–94.

    Google Scholar 

  • Hay, L. (1979). Spatial-temporal analysis of movements in children. Journal of Motor Behavior, 11(3), 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Haywood, K., Roberton, M. A., & Getchell, N. (2012). Advanced analysis of motor development. Champaign: Human Kinetics.

    Book  Google Scholar 

  • Haywood, K. M., & Getchell, N. (2020). Life span motor development (7. Aufl.). Champaign: Human Kinetics.

    Google Scholar 

  • Hillman, C. H., & Schott, N. (2013). Der Zusammenhang von Fitness, kognitiver Leistungsfähigkeit und Gehirnzustand im Schulkindalter: Konsequenzen für die schulische Leistungsfähigkeit. Zeitschrift für Sportpsychologie, 20(1), 33–41.

    Article  Google Scholar 

  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129.

    Article  PubMed  Google Scholar 

  • Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28(2), 587–594.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holfelder, B., & Schott, N. (in press). Object control skill performance across the lifespan: A cross-sectional study. Research Quarterly for Exercise and Sport.

    Google Scholar 

  • Hopkins, M. E., Davis, F. C., VanTieghem, M. R., Whalen, P. J., & Bucci, D. J. (2012). Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215, 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. K., Crosnoe, R., & Elder, G. H. (2011). Insights on adolescence from a life course perspective. Journal of Research on Adolescence, 21(1), 273–280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagerer, F. A., & Clark, J. E. (2014). Development of interactions between sensorimotor representations in school-aged children. Human Movement Science, 34, 164–177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65, 114–121.

    Article  PubMed  Google Scholar 

  • Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. Journals of Gerontology – Series B Psychological Sciences and Social Sciences, 64(3), 356–363.

    Article  PubMed  Google Scholar 

  • Keating, D. P., & Hertzman, C. (Hrsg.). (1999). Developmental health and the wealth of nations: Social, biological, and educational dynamics. New York: Guilford Press.

    Google Scholar 

  • Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089–1102.

    Article  PubMed  Google Scholar 

  • Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exercise Science, 26, 138–146.

    Article  PubMed  Google Scholar 

  • Klotzbier, T. J., & Schott, N. (2017). Cognitive-Motor Interference during walking in older adults with probable mild cognitive impairment. Frontiers Aging Neuroscience, 9, 350. https://doi.org/10.3389/fnagi.2017.00350.

    Article  Google Scholar 

  • Konczak, J., Jansen-Osmann, P., & Kalveram, K. T. (2003). Development of force adaptation during childhood. Journal of Motor Behavior, 35(1), 41–52.

    Google Scholar 

  • Kugler, P. N., Kelso, J. S., & Turvey, M. T. (1982). On the control and coordination of naturally developing systems. In J. A. S. Kelso & J. E. Clark (Hrsg.), The development of movement control and coordination (S. 1–78). London: Wiley.

    Google Scholar 

  • Lai, S. K., Costigan, S. A., Morgan, P. J., Lubans, D. R., Stodden, D. F., Salmon, J., & Barnett, L. M. (2014). Do school-based interventions focusing on physical activity, fitness, or fundamental movement skill competency produce a sustained impact in these outcomes in children and adolescents? A systematic review of follow-up studies. Sports Medicine, 44(1), 67–79.

    Article  PubMed  Google Scholar 

  • Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24.

    Article  CAS  PubMed  Google Scholar 

  • Lange, B. P., & Schwarz, S. (2015). Die menschliche Psyche zwischen Natur und Kultur. Lengerich: Pabst Publishers.

    Google Scholar 

  • Langendorfer, S. J., & Roberton, M. A. (2002). Individual pathways in the development of forceful throwing. Research Quarterly for Exercise & Sport, 73, 245–256.

    Article  Google Scholar 

  • Lingam, R., Golding, M. J., Jongmans, M., Hunt, L. P., Ellis, M., & Emond, A. M. (2009). Developmental coordination disorder and associated developmental traits: More than just an expression of IQ. Archives of Disease in Childhood, 94(Suppl 1), A1–A8.

    Google Scholar 

  • Logan, S. W., Barnett, L. M., Goodway, J. D., & Stodden, D. F. (2017). Comparison of performance on process- and product-oriented assessments of fundamental motor skills across childhood. Journal of Sports Sciences, 35(7), 634–641.

    Google Scholar 

  • Logan, S. W., Robinson, L. E., Wilson, A. E., & Lucas, W. A. (2012). Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. Child: Care, Health and Development, 38(3), 305–315.

    Article  CAS  Google Scholar 

  • Lorson, K. M., Stodden, D. F., Langendorfer, S. J., & Goodway, J. D. (2013). Age and gender differences in adolescent and adult overarm throwing. Research Quarterly for Exercise & Sport, 84, 239–244.

    Article  Google Scholar 

  • Ludyga, S., Gerber, M., Looser, V. N., Pühse, U., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature Human Behaviour, 2020. https://doi.org/10.1038/s41562-020-0851-8.

  • Luft, A. R., & Buitrago, M. M. (2005). Stages of motor skill learning. Molecular Neurobiolology, 32, 205–216.

    Article  CAS  Google Scholar 

  • Magill, R. A., & Anderson, D. (2017). Motor learning and control. Concepts and applications (11. Aufl.). New York: McGraw-Hill.

    Google Scholar 

  • Magnie, M. N., Bermon, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Marrus, N., Eggebrecht, A. T., Todorov, A., … Pruett, J. R. (2018). Walking, gross motor development, and brain functional connectivity in infants and toddlers. Cerebral Cortex, 28(2), 750–763.

    Google Scholar 

  • McGraw, M. B. (1935). Growth: A study of Johnny and Jimmy. New York: Appleton-Century-Crofts.

    Google Scholar 

  • McGraw, M. B. (1940). Neuromuscular development of the human infant as exemplified in the achievement of erect locomotion. The Journal of Pediatrics, 17, 747–771.

    Article  Google Scholar 

  • McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain & Cognition, 80(3), 338–351.

    Article  Google Scholar 

  • McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4), 421–428.

    Article  CAS  Google Scholar 

  • Molenaar, P. C., Lerner, R. M., & Newell, K. M. (Hrsg.). (2013). Handbook of developmental systems theory and methodology. New York, NY: Guilford Publications.

    Google Scholar 

  • Morgan, P. J., Barnett, L. M., Cliff, D. P., Okely, A. D., Scott, H. A., Cohen, K. E., & Lubans, D. R. (2013). Fundamental movement skill interventions in youth: A systematic review and meta-analysis. Pediatrics, 132(5), e1361–e1383.

    Article  PubMed  Google Scholar 

  • Morita, T., Asada, M., & Naito, E. (2016). Contribution of neuroimaging studies to understanding development of human cognitive brain functions. Frontiers in Human Neuroscience, 10, 464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura, Y., Nishimoto, K., Akamatu, M., Takahashi, M., & Maruyama, A. (1999). The effect of jogging on P300 event related potentials. Electromyography and Clinical Neurophysiology, 39(2), 71–74.

    CAS  PubMed  Google Scholar 

  • Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Hrsg.), Motor development in children: Aspects of coordination and control (S. 341–360). Boston: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Oliveira, R. F. de, & Wann, J. P. (2012). Driving skills in young adults with developmental coordination disorder: Maintaining control and avoiding hazards. Human Movement Science, 31, 721–729.

    Google Scholar 

  • Pangelinan, M. M., Zhang, G., VanMeter, J. W., Clark, J. E., Hatfield, B. D., & Haufler, A. J. (2011). Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. NeuroImage, 54(4), 3093–3100.

    Article  PubMed  Google Scholar 

  • Pesce, C., & Audiffren, M. (2011). Does acute exercise switch off switch costs? A study with younger and older athletes. Journal of Sport & Exercise Psychology, 33(5), 609–626.

    Article  Google Scholar 

  • Petersen, S. E., Van Mier, H., Fiez, J. A., & Raichle, M. E. (1998). The effects of practice on the functional anatomy of task performance. Proceedings of the National Academy of Sciences, 95, 853–860.

    Article  CAS  Google Scholar 

  • Pontifex, M. B., Hillman, C. H., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46(2), 379–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Preyer, W. T. (1909a). The mind of the child. Part I: the senses and the will. New York: Appleton (Original work published in German, 1881–1882a).

    Google Scholar 

  • Preyer, W. T. (1909b). The mind of the child. Part II: the development of the intellect. New York: Appleton (Original work published in German, 1881–1882b).

    Google Scholar 

  • Reuter, E., Voelcker-Rehage, C., Vieluf, S., & Godde, B. (2012). Touch perception throughout working life: Effects of age and expertise. Experimental Brain Research, 216, 287–297.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355–370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberton, M. A., & Halverson, L. E. (1984). Developing children – Their changing movement: A guide for teachers. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Robinson, L. E., Rudisill, M. E., & Goodway, J. D. (2009). Instructional climates in preschool children who are at-risk. Part II: Perceived physical competence. Research Quarterly for Exercise and Sport, 80(3), 543–551.

    PubMed  Google Scholar 

  • Robinson, L. E., Stodden, D. F., Barnett, L. M., Lopes, V. P., Logan, S. W., Rodrigues, L. P., & D’Hondt, E. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Medicine, 45(9), 1273–1284.

    Article  PubMed  Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260.

    Article  Google Scholar 

  • Schott, N. (2010a). Entwicklung des Werfens. In N. Schott & J. Munzert (Hrsg.), Lehrbuch Motorische Entwicklung und ihre Anwendung (S. 127–148). Göttingen: Hogrefe.

    Google Scholar 

  • Schott, N. (2010b). Motorische Ungeschicklichkeit. In N. Schott & J. Munzert (Hrsg.), Lehrbuch Motorische Entwicklung und ihre Anwendung (S. 169–185). Göttingen: Hogrefe.

    Google Scholar 

  • Schott, N. (2012). Age-related differences in motor imagery: Working memory as a mediator. Experimental Aging Research, 38(5), 559–583.

    Article  PubMed  Google Scholar 

  • Schott, N. (2015). Trail walking test for assessment of motor cognitive interference in older adults: Development and evaluation of the psychometric properties of the procedure. Zeitschrift für Gerontologie & Geriatrie, 48, 722–733.

    Article  Google Scholar 

  • Schott, N. (2019). Dual task performance in DCD: Understanding trade-offs and their implications for training. Current Developmental Disorders Report, 6, 87. https://doi.org/10.1007/s40474-019-00163-z.

    Article  Google Scholar 

  • Schott, N., & Holfelder, B. (2015). Relationship between motor skill competency and executive function in children with Down’s syndrome. Journal of Intellectual Disability Research, 59(9), 860–872.

    Article  CAS  PubMed  Google Scholar 

  • Schott, N., & Klotzbier, T. (2018a). Profiles of cognitive-motor interference during walking: The effect of motor or cognitive task type on dual-task-walking in children and adolescents. Frontiers in Psychology, section Movement Science and Sport Psychology, 9, 947. https://doi.org/10.3389/fpsyg.2018.00947.

    Article  Google Scholar 

  • Schott, N., & Klotzbier, T. (2018b). The Motor-Cognitive Connection: Indicator of future developmental success in children and adolescents?! In R. P. Bailey, R. Meeusen, S. Schäfer-Cerasari & P. Tomporowski (Hrsg.), Physical activity and educational achievement: Insights from exercise neuroscience (S. 111–129). London/New York: Routledge.

    Google Scholar 

  • Schott, N., & Krull, K. (2019). Stability in lifestyle behaviors – The answer to successful cognitive aging? A comparison of nuns/monks, master athletes and non-active older adults. Frontiers in Psychology (Cognitive Science), 10, 1347. https://doi.org/10.3389/fpsyg.2019.01347.

    Article  Google Scholar 

  • Schott, N., & Munzert, J. (2003). Motorische Entwicklung im Kindesalter. In G. Köppe & J. Schwier (Hrsg.), Handbuch Grundschulsport (S. 31–61). Baltmannsweiler: Schneider.

    Google Scholar 

  • Schott, N., & Munzert, J. (2010). Lehrbuch Motorische Entwicklung und ihre Anwendung. Göttingen: Hogrefe.

    Google Scholar 

  • Schott, N., & Schuetze, P. (2016). Object control in older adults. Journal of Sport & Exercise Psychology, 38(Suppl), S140.

    Google Scholar 

  • Schott, N., El-Rajab, I., & Klotzbier, T. (2016). Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder. Research in Developmental Disabilities, 57, 136–148.

    Article  PubMed  Google Scholar 

  • Schott, N., Rudisch, J., & Voelker-Rehage, C. (2019). Meilensteine der motorischen Verhaltensforschung. Zeitschrift für Sportpsychologie, 26(2), 81–111.

    Article  Google Scholar 

  • Scott, M. A., Williams, A. M., & Horn, R. R. (2003). The coordination of kicking techniques in children. In G. Savelsbergh, K. Davids, J. van der Kamp & S. Bennett (Hrsg.), Development of movement coordination in children: Applications in the field of ergonomics, health sciences and sport (S. 241–250). London: Routledge.

    Google Scholar 

  • Scudder, M. R., Drollette, E. S., Pontifex, M. B., & Hillman, C. H. (2012). Neuroelectric indices of goal maintenance following a single bout of physical activity. Biological Psychology, 89(2), 528–531.

    Article  PubMed  Google Scholar 

  • Seidler, R. D., Bernhard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional and biochemical effects. Neuroscience and Biobehavioral Reviews, 34, 721–733.

    Article  CAS  PubMed  Google Scholar 

  • Shinn, M. (1900). Biography of a baby. Boston: Houghton Mifflin.

    Google Scholar 

  • Shumway-Cook, A., & Woollacott, M. H. (1985). The growth of stability: Postural control from a developmental perspective. Journal of Motor Behavior, 17(2), 131–147.

    Article  CAS  PubMed  Google Scholar 

  • Sibley, B. A., & Etnier, J. L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15, 243–256.

    Article  Google Scholar 

  • Singer, R. N. (1968). Interrelationship of physical, perceptual-motor and academic achievement variables in elementary school children. Perceptual and Motor Skills, 27, 1323–1332.

    Article  Google Scholar 

  • Spirduso, W. W., Francis, K. L., & MacRae, P. G. (2005). Physical dimensions of aging. Champaign: Human Kinetics.

    Google Scholar 

  • Stodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290–306.

    Article  Google Scholar 

  • Strohmeyer, H. S., Williams, K., & Schaub-George, D. (1991). Developmental sequences for catching a small ball: A prelongitudinal screening. Research Quarterly for Exercise & Sport, 62, 257–266.

    Article  CAS  Google Scholar 

  • Sundermier, L., Woollacott, M. H., Jensen, J. L., & Moore, S. (1996). Postural sensitivity to visual flow in aging adults with and without balance problems. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 51(2), M45–M52.

    Article  CAS  Google Scholar 

  • Tandon, P. S., Tovar, A., Jayasuriya, A. T., Welker, E., Schober, D. J., Copeland, K., … Ward, D. S. (2016). The relationship between physical activity and diet and young children’s cognitive development: A systematic review. Preventive Medicine Reports, 3, 379–390.

    Google Scholar 

  • Tiedemann, D. (1787). Beobachtungen ueber die Entwicklung der Seelenfaehigkeiten bei Kindern: Mit Einleitung sowie mit e. Literaturverz. zur Kinderpsychologie. Altenburg: Bonde.

    Google Scholar 

  • Thelen, E. (2000). Motor development as foundation and future of developmental psychology. International Journal of Behavioral Development, 24(4), 385–397.

    Article  Google Scholar 

  • Thelen, E., & Fisher, D. M. (1982). Newborn stepping: An explanation for a „disappearing“ reflex. Developmental Psychology, 18(5), 760–775.

    Article  Google Scholar 

  • Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.

    Article  PubMed  Google Scholar 

  • True, L., Brian, A., Goodway, J., & Stodden, D. (2017). Relationships between product- and process-oriented measures of motor competence and perceived competence. Journal of Motor Learning and Development, 5(2), 319–335.

    Google Scholar 

  • Vieira, L. H. P., Cunha, S. A., Moraes, R., Barbieri, F. A., Aquino, R., Oliveira, L. D. P., … Santiago, P. R. P. (2018). Kicking performance in young U9 to U20 soccer players: Assessment of velocity and accuracy simultaneously. Research Quarterly for Exercise and Sport, 89(2), 210–220.

    Google Scholar 

  • Voelcker-Rehage, C. (2005). Motorische Vielseitigkeitsschulung ist wichtiger als massives Üben – Eine entwicklungspsychologische Betrachtung der motorischen Förderung im Grundschulalter. Sportpädagogik, 4, 55–58.

    Google Scholar 

  • Voelcker-Rehage, C., & Kutz, D. F. (2020). Neurokognition und Bewegung. In J. Schüler, M. Wegner & H. Plessner (Hrsg.), Sportpsychologie: Grundlagen und Anwendung (S. 69–88). Berlin: Springer.

    Chapter  Google Scholar 

  • Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience and Biobehavioral Reviews, 37(9 Pt B), 2268–2295.

    Article  PubMed  Google Scholar 

  • Voelcker-Rehage, C., & Willimczik, K. (2006). Motor plasticity in a juggling task in older adults – A developmental study. Age and Ageing, 35, 422–427.

    Article  PubMed  Google Scholar 

  • Voelcker-Rehage, C., Godde, B., & Staudinger, U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Frontiers in Human Neuroscience, 5, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voelcker-Rehage, C., Reuter, E.-M., Vieluf, S., & Godde, B. (2013). Influence of age and expertise on manual dexterity in the work context – The Bremen-Hand-Study@Jacobs. In C. Schlick, E. Frieling & J. Wegge (Hrsg.), Age-differentiated work systems (S. 391–415). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Wainwright, N., Goodway, J., John, A., Thomas, K., Piper, K., Williams, K., & Gardener, D. (2019). Developing children’s motor skills in the Foundation Phase in Wales to support physical literacy. Education 3–13, 1–15.

    Google Scholar 

  • Wajda, D. A., & Sosnoff, J. J. (2015). Cognitive-Motor Interference in Multiple Sclerosis: A systematic review of evidence, correlates, and consequences. BioMed Research International, 720856. https://doi.org/10.1155/2015/720856.

  • Whitall, J., Bardid, F., Getchell, N., Pangelinan, M. M., Robinson, L., Schott, N., & Clark, J. (2020a). Motor development research: II. The first two decades of the 21st century shaping our future. Journal of Motor Learning and Development, 8(2), 363–390.

    Article  Google Scholar 

  • Whitall, J., Schott, N., Robinson, L., Bardid, F., & Clark, J. (2020b). Motor development research: I. The lessons of history revisited (the 18th to the 20th century). Journal of Motor Learning and Development, 8(2), 345–362.

    Article  Google Scholar 

  • Wild, M. R. (1938). The behavior pattern of throwing and some observations concerning its course of development in children. Research Quarterly, 9(3), 20–24.

    Google Scholar 

  • Williams, K., Haywood, K., & VanSant, A. (1990). Movement characteristics of older adult throwers. In J. Clark & J. Humphrey (Hrsg.), Advances in motor development research (Bd. 3, S. 29–44). New York: AMS Press.

    Google Scholar 

  • Williams, K., Haywood, K., & VanSant, A. (1991). Throwing patterns of older adults: A follow-up investigation. International Journal of Aging and Human Development, 33, 279–294.

    Article  CAS  PubMed  Google Scholar 

  • Williams, K., Haywood, K., & VanSant, A. (1998). Changes in throwing by older adults: A longitudinal investigation. Research Quarterly for Exercise & Sport, 69, 1–10.

    Article  CAS  Google Scholar 

  • Willimczik, K., Voelcker-Rehage, C., & Wiertz, O. (2006). Sportmotorische Entwicklung über die Lebensspanne – Empirische Befunde zu einem theoretischen Konzept. Zeitschrift für Sportpsychologie, 13, 1–13.

    Article  Google Scholar 

  • Wilson, P., Smits-Engelsman, B. C., Caeyenberghs, K., & Steenbergen, B. (2017a). Toward a hybrid model of developmental coordination disorder. Current Developmental Disorders Reports (online), 4(3), 64–71.

    Article  Google Scholar 

  • Wilson, P. H., Smits-Engelsman, B., Caeyenberghs, K., Steenbergen, B., Sugden, D., Clark, J., et al. (2017b). Cognitive and neuroimaging findings in developmental coordination disorder: New insights from a systematic review of recent research. Developmental Medicine & Child Neurolology, 59, 1117–1129.

    Article  Google Scholar 

  • Wollny, R. (2002). Motorische Entwicklung in der Lebensspanne – Warum lernen und optimieren manche Menschen Bewegungen besser als andere? Schorndorf: Hofmann.

    Google Scholar 

  • Wollny, R. (2007). Traditionen und gegenwärtige Trends der motorischen Entwicklungsforschung in Deutschland. Motorik, 30, 102–111.

    Google Scholar 

  • Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait and Posture, 16, 1–14.

    Article  PubMed  Google Scholar 

  • Yerkes, R. M., & Dodson, J. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482.

    Article  Google Scholar 

  • Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329–342.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Voelcker-Rehage .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schott, N., Voelcker-Rehage, C. (2021). Motorische Entwicklung über die Lebensspanne. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53386-4_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53386-4_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53386-4

  • Online ISBN: 978-3-662-53386-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics