Skip to main content

Insights into Polymer Crystallization from Phase-Field Theory

  • Living reference work entry
  • First Online:
Encyclopedia of Polymers and Composites

Introduction

The formation of diverse “soft” materials composed of synthetic and biological polymers, small molecule “gelator” molecules, as well as colloid particles and nanoparticles frequently involves structures formed by crystallization under far from equilibrium conditions so that the study of nonequilibrium crystallization lies at the heart of soft matter physics. A truly amazing diversity of structures can be formed in this way, and an equally diverse range of physical properties can be obtained by varying the thermodynamic ordering conditions; a fundamental theoretical and experimental challenge in this field is then to learn how to harness this structural polymorphism to create functional materials. The potential of this approach to material science fabrication is evidenced by numerous examples in the biological world (e.g., exoskeletons, claws, and pinchers of insects and crustaceans, etc.) where truly remarkable and tunable (even locally tunable) material properties can be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agapov AL, Sokolov AP (2011) Decoupling ionic conductivity from structural relaxation: A way to solid polymer electrolytes? Macromolecules 44:4410

    CAS  Google Scholar 

  • Allen SM, Cahn JW (1979) Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085

    CAS  Google Scholar 

  • Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP (1992) Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185

    Google Scholar 

  • Armistead K, Goldbeck-Wood G, Keller A (1992) Polymer crystallization theories. Adv Polymer Sci 100:219

    Google Scholar 

  • Bedrov D, Smith GD, Douglas JF (2002) Influence of self-assembly on dynamical and viscoelastic properties of telechelic polymer solutions. Europhys Lett 59:384

    CAS  Google Scholar 

  • Beers KL, Douglas JF, Amis EJ, Karim A (2003) Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir 19:3935

    CAS  Google Scholar 

  • Berry J, Elder KR, Grant M (2008) Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation. Phys Rev E 77:061506

    Google Scholar 

  • Billia B, Trivedi R (1993) Pattern formation in crystal growth. In: Hurle DTJ (ed) Handbook of crystal growth IB: fundamentals, transport and stability. North-Holland, Amsterdam, p 899

    Google Scholar 

  • Bisang U, Bilgram JH (1996) Shape of the tip and the formation of sidebranches of xenon dendrites. Phys Rev E 54:5309

    CAS  Google Scholar 

  • Bisault J, Ryschenkow G, Faivre G (1991) Spherulitic branching in the crystallization of liquid Selenium. J Cryst Growth 110:889

    CAS  Google Scholar 

  • Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (1999) Dendrites regularized by spatially homogeneous time-periodic forcing. Phys Rev Lett 83:2853

    Google Scholar 

  • Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (2000) Regular dendritic patterns induced by nonlocal time-periodic forcing. Phys Rev E 62:7817

    Google Scholar 

  • Bragard J, Karma A, Lee YH, Plapp M (2002) Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooledmelts. Iterface Sci 10:121

    CAS  Google Scholar 

  • Brazovskii SA (1975) Phase transition of an isotropic system to an inhomogeneous state. Zh Eksp Teor Fiz 68:175

    Google Scholar 

  • Cahn JW (1996) The time cone method for nucleation and growth kinetics on a finite domain. In: Greer AL et al (eds) Thermodynamics and kinetics of phase transformations. Materials Research Society symposium proceedings no. 398, vol 398. Materials Research Society, Pittsburgh, p 425

    Google Scholar 

  • Cahn JW (1997) Johnson-Mehl-Avrami kinetics on a finite growing domain with time and position dependent nucleation and growth rates. Trans Ind Inst Metals 50:573

    CAS  Google Scholar 

  • Chang I, Sillescu H (1997) Heterogeneity at the glass transition: Translational and rotational self-diffusion. J Phys Chem B 101:8794

    CAS  Google Scholar 

  • Charbon C, Swaminarayan S (1998) Multiscale model for polymer crystallization. II: Solidification of a macroscopic part. Polym Eng Sci 38:644

    CAS  Google Scholar 

  • Chen J, Cheng SZD, Wu SS, Lotz B (1995) Polymer decoration study in chain folding behavior of solution-grown poly(ethylene oxide) crystals. J Polym Sci B 33:1851. Note that PEO has a monoclinic crystal structure and a 7/2 helix chain conformation. Solution and melt grown crystals formed under near-equilibrium conditions have a square-like shape

    CAS  Google Scholar 

  • Christian JW (1981) The theory of transformations in metals and alloys. Pergamon, Oxford

    Google Scholar 

  • Davidchack RL, Laird BB (1998) Simulation of the hard-sphere crystal–melt interface. J Chem Phys 108:9452

    CAS  Google Scholar 

  • Domike KR, Donald AM (2009) Kinetics of spherulite formation and growth: Salt and protein concentration dependence on proteins betalactoglobulin and insulin. Int J Biol Macromol 44:301

    CAS  Google Scholar 

  • Dudowicz J, Freed KF, Douglas JF (2003) Flory-Huggins model of equilibrium polymerization and phase separation in the Stockmayer fluid. Phys Rev Lett 92:045502

    Google Scholar 

  • Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Ann Rev Phys Chem 51:99

    CAS  Google Scholar 

  • Ehrenstein GW (2001) Polymeric materials, structure – properties – applications. Carl Hanser Verlag, Munich

    Google Scholar 

  • Elder KR, Katakowski M, Haataja M, Grant M (2002) Modeling elasticity in crystal growth. Phys Rev Lett 88:245701

    CAS  Google Scholar 

  • Elder KR, Provatas N, Berry J, Stefanovic P, Grant M (2007) Phase-field crystal modeling and classical density functional theory of freezing. Phys Rev B 75:064107

    Google Scholar 

  • Emmerich H, Löwen H, Wittkowski R, Gruhn T, Tóth GI, Tegze G, Gránásy L (2012) Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive timescales: an overview. Adv Physiol Educ 61:665

    Google Scholar 

  • Exley C, House E, Collingwood JF, Davidson MR, Cannon D, Donald AM (2010) Spherulites of amyloid-beta42 in vitro and in Alzheimer's disease. J Alzheimer Dis 20:1159

    CAS  Google Scholar 

  • Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611

    CAS  Google Scholar 

  • Ferreiro V, Douglas JF, Warren JA, Karim A (2002a) Nonequilibrium pattern formation in the crystallization of polymer blend films. Phys Rev E 65:042802

    Google Scholar 

  • Ferreiro V, Douglas JF, Warren J, Karim A (2002b) Growth pulsations in symmetric dendritic crystallization in thin polymer blend films. Phys Rev E 65:051606

    Google Scholar 

  • Fleury V, Kaufman JH, Hibbert DB (1994) A mechanism of morphology transition in ramified growth. Nature (London) 367:435

    CAS  Google Scholar 

  • Gatos KG, Minogianni C, Galiotis C (2007) Quantifying crystalline fraction within polymer spherulites. Macromolecules 40:786

    CAS  Google Scholar 

  • Geil PH (1963) Polymer single crystals. Wiley, New York

    Google Scholar 

  • Geil PH, Reneker DH (1961) Morphology of dendritic polyethylene crystals. J Polym Sci 51:569

    CAS  Google Scholar 

  • Glicksman ME, Marsh SP (1993) The dendrite. In: Hurle DTJ (ed) Handbook of crystal growth IB: fundamentals, transport and stability. North-Holland, Amsterdam, p 1075

    Google Scholar 

  • Gránásy L, Pusztai T (unpublished)

    Google Scholar 

  • Gránásy L, Börzsönyi T, Pusztai T (2002) Nucleation and bulk crystallization in binary phase field theory. Phys Rev Lett 88:206105

    Google Scholar 

  • Gránásy L, Pusztai T, Warren JA, Douglas JF, Börzsönyi T, Ferreiro V (2003a) Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nature Mater 2:92

    Google Scholar 

  • Gránásy L, Börzsönyi T, Pusztai T (2003b) Phase field theory of nucleation and growth in binary alloys. Interface and transport dynamics, computational modelling. In: Emmerich H, Nestler B, Schreckenberg M (eds) Lecture notes in computational science and engineering, vol 32. Springer, Berlin, pp 190–195

    Google Scholar 

  • Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF (2004a) A general mechanism of polycrystalline growth. Nature Mater 3:645

    Google Scholar 

  • Gránásy L, Pusztai T, Warren JA (2004b) Modelling polycrystalline solidification using phase field theory. J Phys Condens Matter 16:R1205

    Google Scholar 

  • Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005) Growth and form of spherulites. Phys Rev E 72:011605

    Google Scholar 

  • Gránásy L, Pusztai T, Saylor D, Warren JA (2007) Phase field theory of heterogeneous crystal nucleation. Phys Rev Lett 98:035703

    Google Scholar 

  • Gunn E, Wong L, Branham CW, Marquardt B, Kahr B (2011) Extinction mapping of polycrystalline patterns. Cryst Eng Comm 13:1123

    CAS  Google Scholar 

  • Gunton JD, San Miguel M, Sahni PS (1983) The dynamics of first-order phase transitions. In: Domb C, Lebowitz J (eds) Phase transitions and critical phenomena. Academic, London, p 267

    Google Scholar 

  • Hanakata PZ, Douglas JF, Starr FW (2012) Local variation of fragility and glass transition temperature of ultra-thin supported polymer films. J Chem Phys 137:244901

    Google Scholar 

  • Henry H, Mellenthin J, Plapp M (2002) Orientation-field model for polycrystalline solidification with a singular coupling between order and orientation. Phys Rev B 86:054117

    Google Scholar 

  • Honjo H, Ohta S, Sawada Y (1985) New experimental findings in two-dimensional dendritic crystal growth. Phys Rev Lett 55:841

    CAS  Google Scholar 

  • Hosier IL, Bassett DC, Vaughan AS (2000) Spherulitic growth and cellulation in dilute blends of monodisperse long n-alkanes. Macromolecules 33:8781

    CAS  Google Scholar 

  • Hoyt JJ, Asta M, Karma A (2003) Atomistic and continuum modeling of dendritic solidification. Mater Sci Eng R 41:121

    Google Scholar 

  • Hutter JL, Bechhoefer J (1999) Morphology transitions in diffusion- and kinetics-limited solidification of a liquid crystal. Phys Rev E 59:4342

    CAS  Google Scholar 

  • Hutter JL, Bechhoefer J (2000) Banded spherulitic growth in a liquid crystal. J Cryst Growth 217, 332

    Google Scholar 

  • Ihle T, Müller-Krumbhaar H (1994) Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys Rev E 49:2972

    CAS  Google Scholar 

  • James PF (1982) Nucleation and Crystallization in Glasses. In: Simmons JH, Uhlmann DR, Beagle GH (eds) Advances in ceramics, vol 4. American Ceramic Society, Westerville, p 1

    Google Scholar 

  • Jin L-W, Claborn KA, Kurimoto M, Geday MA, Maezawa I, Sohraby F, Estrada M, Kaminsky W, Kahr B (2003) Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proc Natl Acad Sci USA 100:15294

    CAS  Google Scholar 

  • Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323

    CAS  Google Scholar 

  • Keith HD, Padden FJ (1959) The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites. J Polym Sci 39:123. Symmetric dendritic growth has been frequently reported for the crystallization of polymers from solution on surfaces

    CAS  Google Scholar 

  • Keith HD, Padden FJ (1963) The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Appl Phys 34:2409

    CAS  Google Scholar 

  • Keith HD, Padden FJ (1964) Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization. J Appl Phys 35:1270

    CAS  Google Scholar 

  • Keller A, Warner M, Windle AH (eds) (1995) Self-order and form in polymeric materials. The Royal Society, Chapman & Hall, London

    Google Scholar 

  • Kelton KF, Greer AL (2010) Nucleation in condensed matter: application in materials and biology, Pergamon materials series. Elsevier, Amsterdam, p 393, Chap. 11

    Google Scholar 

  • Khoury F (1966) The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J Res Natl Bur Stand Sect A 70:29

    CAS  Google Scholar 

  • Kobayashi R, Warren JA (2005) Extending phase field models of grain boundaries to three dimensions. TMS Lett 2:1

    Google Scholar 

  • Kobayashi R, Warren JA, Carter WC (1998) Vector-valued phase field model for crystallization and grain boundary formation. Physica D 119:415

    CAS  Google Scholar 

  • Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989

    CAS  Google Scholar 

  • Köster U, Herold U (1981) In: Güntherodt JH, Beck H (eds) Glassy metals I. Topics in applied physics, vol 46. Springer, Berlin, p 225

    Google Scholar 

  • Kovacs AJ, Lotz B, Keller A (1969) Multiple twinning in polyethylene oxide single crystals-a scheme for the formation of growth twins from self-seeding nuclei. J Macromol Sci Phys B3:385

    Google Scholar 

  • Krebs MRH, MacPhee CE, Miller AF, Dunlop IE, Dobson CM, Donald AM (2004) The formation of spherulites by amyloid fibrils of bovine insulin. Proc Natl Acad Sci USA 101:14420

    CAS  Google Scholar 

  • Kumar SK, Douglas JF (2001) Gelation in Physically Associating Polymer Solutions. Phys Rev Lett 87:188301

    Google Scholar 

  • Kurz W, Fisher DJ (1990) Fundamentals of solidification (trans: Tech. Publishing). Aedermannsdorf

    Google Scholar 

  • Lee K, Losert W (2004) Local control of the dendritic microstructure through perturbations. J Cryst Growth 269:592

    CAS  Google Scholar 

  • Lee K, Losert W (2005) Controlled dynamics of grain boundaries in binary alloys. Acta Mater 53:3503

    CAS  Google Scholar 

  • Lee SS, Tang SB, Smilgies D-M, Woll AR, Loth MA, Mativetsky JM, Anthony JE, Loo Y-L (2012) Guiding crystallization around bends and sharp corners. Adv Mater 24:2692

    CAS  Google Scholar 

  • Lomas D, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605

    CAS  Google Scholar 

  • Lotz B, Wittmann JC (1986) The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene. J Polym Sci Part B Polym Phys 24:1541

    CAS  Google Scholar 

  • Magill JH (2001) Spherulites: a personal perspective. J Mater Sci 36:3143

    CAS  Google Scholar 

  • Magill JH, Plazek DJ (1967) Physical properties of aromatic hydrocarbons. III. A test of the Adam–Gibbs relaxation model for glass formers based on the heat-capacity data of 1,3,5-tri-α-naphthylbenzene. J Chem Phys 46:3757

    CAS  Google Scholar 

  • Mandelkern L (2004) Crystallization of polymers. Kinetics and mechanism, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Masuhr A, Waniuk TA, Busch R, Johnson WL (1999) Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Phys Rev Lett 82:2290

    CAS  Google Scholar 

  • Morris LR, Winegard WC (1967) Dendrite tip stability. J Cryst Growth 1:245

    CAS  Google Scholar 

  • Morse HW, Donnay JDH (1932) Spherulite optics. Am J Sci 23(Series 5):440

    Google Scholar 

  • Morse HW, Warren CH, Donnay JDH (1932) Artificial spherulites and related aggregates. Am J Sci 23(Series 5):421

    CAS  Google Scholar 

  • Mullins WW, Sekerka RF (1963) Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys 34:323

    Google Scholar 

  • Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35, 444

    Google Scholar 

  • Ngai KL, Magill JH, Plazek DJ (2000) Flow, diffusion and crystallization of supercooled liquids: Revisited. J Chem Phys 112:1887

    CAS  Google Scholar 

  • Ojeda JR, Martin DC (1993) High resolution microscopy of PMDA-ODA poly(imide) single crystals. Macromolecules 26:6557

    CAS  Google Scholar 

  • Okerberg BC, Marand H, Douglas JF (2008) Dendritic crystallization in thin films of PEO/PMMA blends: A comparison to crystallization in small molecule liquids. Polymer 49:579

    CAS  Google Scholar 

  • Padden FJ, Keith HD (1965) Crystalline morphology of synthetic polypeptides. J Appl Phys 36:2987

    CAS  Google Scholar 

  • Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279:939

    CAS  Google Scholar 

  • Paymino Beatncourt BA, Douglas JF, Starr FW (2013) Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter 9:241

    Google Scholar 

  • Phillips PJ (1993) Handbook of crystal growth, vol 2. Elsevier, Amsterdam, Chap. 18

    Google Scholar 

  • Pons AJ, Karma A, Akamatsu S, Newey M, Pomerance A, Singert H, Losert W (2007) Feedback control of unstable cellular solidification fronts. Phys Rev E 75:021602

    CAS  Google Scholar 

  • Pusztai T, Bortel G, Gránásy L (2005) Phase field theory of polycrystalline solidification in three dimensions. Europhys Lett 71:131

    CAS  Google Scholar 

  • Pusztai T, Tegze G, Tóth GI, Környei L, Bansel G, Fan Z, Gránásy L (2008) Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation. J Phys Condens Matter 20:404205

    Google Scholar 

  • Ramakrishnan TV, Yussouff M (1979) First-principles order-parameter theory of freezing. Phys Rev B 19:2775

    CAS  Google Scholar 

  • Riggleman RA, Yoshimoto K, Douglas JF, de Pablo JJ (2006) Influence of confinement on the fragility of antiplasticized and pure polymer films. Phys Rev Lett 97:045502

    Google Scholar 

  • Riggleman RA, Douglas JF, de Pablo JJ (2007) Tuning polymer melt fragility with antiplasticizer additives. J Chem Phys 126:234903

    Google Scholar 

  • Riggleman RA, Douglas JF, de Pablo JJ (2007) Tuning polymer melt fragility with antiplasticizer additives. J Chem Phys 126:234903; Soft Matter 6, 292 (2010)

    Google Scholar 

  • Rogers SS, Krebs MRH, Bromley EHC, van der Linden E, Donald AM (2006) Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro. Biophys J 90:1043

    CAS  Google Scholar 

  • Rolley E, Ballibar S, Gallet F (1986) The First Roughening Transition of 3He Crystals. Europhys Lett 2:247

    CAS  Google Scholar 

  • Rössler E (1990) Indications for a change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595

    Google Scholar 

  • Ryschenkow G, Faivre G (1988) Bulk crystallization of liquid selenium – primary nucleation, growth-kinetics and modes of crystallization. J Non-Cryst Solids 87:221

    CAS  Google Scholar 

  • Sawada Y, Perrin B, Tabeling P, Boussou P (1991) Oscillatory growth of dendritic tips in a three-dimensional system. Phys Rev A 43:5537

    CAS  Google Scholar 

  • Simulation performed by Gránásy L, Pusztai T (2005) Presented in invited talk “Growth and form of spherulites: a phase field study” by Gránásy L, Pusztai T, Tegze G, Bortel G, Warren JA, Douglas JF at the APS March meeting, 13–16 March 2006, Baltimore

    Google Scholar 

  • Skjeltorp AT (1987) Visualization and characterization of colloidal growth from ramified to faceted structures. Phys Rev Lett 58:1444

    CAS  Google Scholar 

  • Sokolov AP, Schweitzer KS (2009) Resolving the mystery of the chain friction mechanism in polymer liquids. Phys Rev Lett 102:248301

    Google Scholar 

  • Sperling LH (1992) Introduction to physical polymer science. Wiley, New York, Chap. 6

    Google Scholar 

  • Starr FW, Douglas JF (2011) Modifying fragility and collective motion in polymer melts with nanoparticles. Phys Rev Lett 106:115702

    Google Scholar 

  • Steinbach I, Pezzolla E, Nestler B, Rezende J, Seesselberg M, Schmitz GJ (1996) A phase field concept for multiphase systems. Physica D 94:135

    Google Scholar 

  • Swallen SF, Bonvallet PA, McMahon RJ, Ediger MD (2003) Self-diffusion of tris-naphthylbenzene near the glass transition temperature. Phys Rev Lett 90:015901

    Google Scholar 

  • Swift J, Hohenberg PC (1977) Hydrodynamic fluctuations at the convective instability. Phys Rev A 15:319

    Google Scholar 

  • Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R (2001) Growth shape of isotactic polystyrene crystals in thin films. Polymer 42:7443

    CAS  Google Scholar 

  • Tegze G, Gránásy L, Tóth GI, Douglas JF, Pusztai T (2011a) Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering. Soft Matter 7:1789

    CAS  Google Scholar 

  • Tegze G, Tóth GI, Gránásy L (2011b) Faceting and branching in 2d crystal growth. Phys Rev Lett 106:195502

    Google Scholar 

  • Till PH (1957) The growth of single crystals of linear polyethylene. J Polym Sci 24:301

    CAS  Google Scholar 

  • Tóth GI, Tegze G, Pusztai T, Tóth G, Gránásy L (2010) Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D. Phys Condens Matter 22:364101

    Google Scholar 

  • Utter B, Bodenschatz E (2005) Double dendrite growth in solidification. Phys Rev E 72:011601

    Google Scholar 

  • Utter B, Ragnarsson R, Bodenschatz E (2001) Alternating tip splitting in directional solidification. Phys Rev Lett 86:4604

    CAS  Google Scholar 

  • van Teeffelen S, Likos CN, Löwen H (2008) Colloidal Crystal Growth at Externally Imposed Nucleation Clusters. Phys Rev Lett 100:108302

    Google Scholar 

  • Walker ML, Smith AP, Karim A (2003) Combinatorial Approach for Studying the Effects of 4-Biphenyl Carboxylic Acid on Polypropylene Films. Langmuir 19:6582

    CAS  Google Scholar 

  • Warren JA, Boettinger WJ (1995) Predictions of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall Mater 43:689

    CAS  Google Scholar 

  • Warren JA, Pusztai T, Környei L, Gránásy L (2009) Phase field approach to heterogeneous crystal nucleation in alloys. Phys Rev B 79:014204

    Google Scholar 

  • Weaire D, Rivier N (1984) Soap, cells and statistics – random patterns in 2 dimensions. Contemp Phys 25:59

    Google Scholar 

  • Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz D (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627

    CAS  Google Scholar 

  • Williams L, Muschol M, Qian X, Losert W, Cummins HZ (1993) Dendritic sidebranching with periodic localized perturbations: Directional solidification of pivalic acid–coumarin 152 mixtures. Phys Rev E 48:489

    CAS  Google Scholar 

  • Wunderlich B (1976) Macromolecular physics, vols 1 and 2. Academic, New York

    Google Scholar 

  • Xu H, Keawwattana W, Kyu T (2005a) Effect of thermal transport on spatiotemporal emergence of lamellar branching morphology during polymer spherulitic growth. J Chem Phys 123:124908

    Google Scholar 

  • Xu H, Matkar R, Kyu T (2005b) Phase-field modeling on morphological landscape of isotactic polystyrene single crystals. Phys Rev E 72:011804

    Google Scholar 

Download references

Acknowledgments

This work employs techniques developed in the framework of the EU FP7 Collaborative Project “EXOMET” (contract no. NMP-LA-2012-280421, co-funded by ESA) and ESA MAP/PECS projects “MAGNEPHAS III” (ESTEC Contract No. 4000105034/11/NL/KML) and “GRADECET” (ESTEC Contract No. 4000104330/11/NL/KML). We thank former NIST postdocs Vincent Ferreiro and Brian C. Okerberg for providing images of crystallizing polymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Gránásy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gránásy, L., Pusztai, T., Douglas, J.F. (2013). Insights into Polymer Crystallization from Phase-Field Theory. In: Palsule, S. (eds) Encyclopedia of Polymers and Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics