Skip to main content

Earthquake Location

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

3D velocity models; Earthquake; Hypocenter; Location methods

Introduction

Accurate estimation of an earthquake location is an essential starting point for quantitative seismological analyses, such as seismic hazard analyses and seismotectonics. Although the fundamentals of earthquake location were established nearly a century ago, improvements in robustness to data errors and nonoptimal network configuration have enabled semiautomation of the event location process. Further, algorithmic advancements and improved models of seismic wave speed in the Earth’s interior continue to improve event location accuracy.

In the context of this entry, earthquake epicenter will be taken to mean the surface projection of the estimated latitude and longitude where fault rupture initiates. Earthquake location means epicenter and depth, and hypocenter means location and origin time. After a short introduction to the history of the methods for the determination of earthquake locations, a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bolt BA (1960) The revision of earthquake epicentres, focal depths and origin times using a high-speed computer. Geophys J Roy Astron Soc 3:433–440

    Article  Google Scholar 

  • Bondár I, McLaughlin K (2009) Seismic location bias and uncertainty in the presence of correlated and non-Gaussian travel-time errors. Bull Seism Soc Am 99:172–193

    Article  Google Scholar 

  • Bondár I, Storchak D (2011) Improved location procedures at the International Seismological Centre. Geophys J Int 186:1220–1244. doi:10.1111/j.1365-246X.2011.05107.x

    Article  Google Scholar 

  • Bratt SR, Bache TC (1988) Locating events with a sparse network of regional arrays. Bull Seism Soc Am 78:780–798

    Google Scholar 

  • Buland R (1986) Uniform reduction error analysis. Bull Seism Soc Am 76:217–230

    Google Scholar 

  • Buland R, Chapman C (1983) The computation of seismic travel times. Bull Seism Soc Am 73:1271–1302

    Google Scholar 

  • Dewey JW (1972) Seismicity and tectonics of western Venezuela. Bull Seism Soc Am 62:1711–1751

    Google Scholar 

  • Douglas A (1967) Joint epicentre determination. Nature 215:47–48

    Article  Google Scholar 

  • Engdahl ER, Gunst RH (1966) Use of a high speed computer for the preliminary determination of earthquake hypocenters. Bull Seism Soc Am 56:325–336

    Google Scholar 

  • Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A, chapter 41. Academic Press, Amsterdam, pp 665–690

    Chapter  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seism Soc Am 88:722–743

    Google Scholar 

  • Flanagan MP, Myers SC, Koper KD (2007) Regional travel-time uncertainty and seismic location improvement using a three-dimensional a priori velocity model. Bull Seism Soc Am 97:804–825

    Article  Google Scholar 

  • Geiger L (1910) Herdbestimmung bei Erdbeben aus den Ankunftszeiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 4:331–349

    Google Scholar 

  • Got J-L, Fréchet J, Klein FW (1994) Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J Geophys Res 99:15375–15386

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton University Press, Princeton

    Google Scholar 

  • Hole JA, Zelt BC (1995) 3-D finite-difference reflection travel times. Geophys J Int 121:427–434

    Article  Google Scholar 

  • Jeffreys H (1932) An alternative to the rejection of observation. Mon Not R Astr Soc Geophys Suppl 2:78–87

    Google Scholar 

  • Jeffreys H, Bullen KE (1940) Seismological tables. British Association of the Advancement of Science, Gray-Milne Trust, London

    Google Scholar 

  • Jordan TH, Sverdrup KA (1981) Teleseismic location techniques and their application to earthquake clusters in the South-central Pacific. Bull Seism Soc Am 71:1105–1130

    MathSciNet  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Travel times for global earthquake location and phase identification. Geophys J Int 105:429–465

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Lee WHK, Lahr JC (1972) HYPO71: a computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes. U.S. Geological Survey Open File Report, Menlo Park, pp 72–224

    Google Scholar 

  • Lienert BR, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seism Res Let 66:26–36

    Article  Google Scholar 

  • Lomax A, Virieux J, Volant P, Berge C (2000) Probabilistic earthquake location in 3D and layered models: introduction of a Metropolis–Gibbs method and comparison with linear locations. In: Thurber CH, Rabinowitz N (eds) Advances in seismic event location. Kluwer, Hingham, pp 101–134

    Chapter  Google Scholar 

  • Milne J (1886) Earthquakes and other earth movements. Appleton, New York

    Google Scholar 

  • Myers SC, Johannesson G, Hanley W (2007) A Bayesian hierarchical method for multiple-event seismic location. Geophys J Int 171:1049–1063. doi:10.1111/j.1365-246X.2007.03555.x

    Article  Google Scholar 

  • Myers SC, Johannesson G, Hanley W (2009) Incorporation of probabilistic seismic phase labels into a Bayesian multiple-event seismic locator. Geophys J Int 171:193–204. doi:10.1111/j.1365-246X.2008.04070.x

    Article  Google Scholar 

  • Myers SC, Begnaud ML, Ballard S, Pasyanos ME, Phillips WS, Ramirez AL, Antolik MS, Hutcheson KD, Dwyer JJ, Rowe CA, Wagner GS (2010) A crust and upper-mantle model of Eurasia and North Africa for Pn travel-time calculation. Bull Seism Soc Am 100:640–656

    Article  Google Scholar 

  • Myers SC, Johannesson G, Simmons NA (2011) Global-scale P-wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 1. Data set development. J Geophys Res 116, B04304. doi:10.1029/2010JB007967

    Google Scholar 

  • Pavlis GL, Booker JR (1983) Progressive multiple event location (PMEL). Bull Seism Soc Am 73:1753–1777

    Google Scholar 

  • Rawlinson N, Sambridge M (2004) Wave front evolution in strongly heterogeneous layered media. Geophys J Int 156:631–647

    Article  Google Scholar 

  • Ritzwoller MH, Shapiro NM, Levshin EA, Bergman EA, Engdahl ER (2003) Ability of a global three-dimensional model to locate regional events. J Geophys Res 108(B7):2353. doi:10.1029/2002JB002167

    Google Scholar 

  • Rodi WL (2006) Grid-search event location with non-Gaussian error models. Phys Earth Planet Int 158:55–66

    Article  Google Scholar 

  • Sambridge MS, Kennett BLN (1986) A novel method of hypocenter location. Geophys J Roy Astr Soc 87:679–697

    Article  Google Scholar 

  • Sambridge MS, Kennett BLN (2001) Seismic event location: nonlinear inversion using a neighbourhood algorithm. Pure Appl Geophys 158:241–257

    Article  Google Scholar 

  • Schweitzer J (2001) HYPOSAT – an enhanced routine to locate seismic events. Pure Appl Geophys 158:277–289

    Article  Google Scholar 

  • Simmons NA, Myers SC, Johannesson G, Matzel E (2012). LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J Geophys Res 117(B10). doi:10.1029/2012JB009525

    Google Scholar 

  • Storchak DA, Di Giacomo D, Bondár I, Engdahl ER, Harris J, Lee WHK, Villaseñor A, Bormann P (2013) Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009). Seism Res Let 84:810–815

    Article  Google Scholar 

  • Waldhauser F (2009) Near-real-time double-difference event location using long-term seismic archives, with application to Northern California. Bull Seism Soc Am 99:2736–2848

    Article  Google Scholar 

  • Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, CA. Bull Seism Soc Am 90:1353–1368

    Article  Google Scholar 

  • Yang X, Bondár I, Bhattachryya J, Ritzwoller M, Shapiro N, Antolik M, Ekström G, Israelsson H, McLaughlin K (2004) Validation of regional and teleseismic travel-time models by relocating GT events. Bull Seism Soc Am 94:897–919

    Article  Google Scholar 

  • Zhao D, Lei J (2004) Seismic ray path variations in a 3D global velocity model. Phys Earth Planet Int 141:153–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bondár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bondár, I., Myers, S.C., Engdahl, E.R. (2014). Earthquake Location. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_184-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics