Skip to main content

New Insights in Photoaging Process Revealed by In Vitro Reconstructed Skin Models

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Photoaging, clinically characterized by wrinkles, sagging, and age spots, mostly results from chronic impacts of solar ultraviolet (UV) rays affecting the whole skin, from surface to deep dermis. Three-dimensional (3-D) organotypic skin models represent useful in vitro tools to better understand the early UV-induced biological events. Such systems not only allow to reproduce in vitro well-known biomarkers for sunburn reaction but also to identify new key biological alterations induced by UVA exposure and involved in dermal photoaging process. Based upon new scientific proofs of the harmful role of chronic suberythemal UV exposures, the effects of exposures to nonextreme daily UV spectrum, mimicking more realistic everyday life conditions, have revealed a true biological impact upon skin with a strong oxidative stress and a major contribution of UVA rays. More recent data have demonstrated the damaging effects of long UVA wavelengths (UVA1), although less energetic than UVB or UVA2. UVA1 exposure could actually induce the production of reactive oxygen species (ROS) and DNA lesions but also impair several major biological functions and pathways in both epidermis and dermis. These data are in line with recent in vivo data, altogether strongly supporting the need for an adequate UVA1 photoprotection. Finally, the development of a full-thickness pigmented skin model allows to prove the role of dermal fibroblasts on the pigmentary function, showing that the photoaging of dermal fibroblasts can stimulate skin pigmentation. A link between photoaging-induced dermal alterations and pigmentary changes could then be established thanks to an appropriate in vitro skin model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Flament F, Bazin R, Laquieze S, Rubert V, Simonpietri E, Piot B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin Cosmet Invest Dermatol. 2013;6:221–32.

    Article  Google Scholar 

  2. Gunn DA, Rexbye H, Griffiths CE, Murray PG, Fereday A, Catt SD, Tomlin CC, Strongitharm BH, Perrett DI, Catt M, Mayes AE, Messenger AG, Green MR, van der Ouderaa F, Vaupel JW, Christensen K. Why some women look young for their age. PLoS One. 2009;4:e8021.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gordon JR, Brieva JC. Images in clinical medicine. Unilateral dermatoheliosis. N Engl J Med. 2012;366:e25.

    Article  PubMed  Google Scholar 

  4. Ortonne JP, Bissett DL. Latest insights into skin hyperpigmentation. J Invest Dermatol Symp Proc. 2008;13:10–4.

    Article  Google Scholar 

  5. Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300 Suppl 1:S1–6.

    Article  PubMed  Google Scholar 

  6. Lavker RM. Cutaneous aging: chronologic versus photoaging. In: Gilchrest BA, editor. Photodamage. Cambridge, MA: Blackwell; 1995. p. 123–35.

    Google Scholar 

  7. Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ. Reduced type I and type III procollagens in photodamaged adult human skin. J Invest Dermatol. 1995;105:285–90.

    Article  CAS  PubMed  Google Scholar 

  8. Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol. 2001;145:10–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein EF, Fisher LW, Li K, LeBaron RG, Tan EM, Uitto J. Differential expression of the versican and decorin genes in photoaged and sun-protected skin. Comparison by immunohistochemical and northern analyses. Lab Invest. 1995;72:662–9.

    CAS  PubMed  Google Scholar 

  10. Chen VL, Fleischmajer R, Schwartz E, Palaia M, Timpl R. Immunochemistry of elastotic material in sun-damaged skin. J Invest Dermatol. 1986;87:334–7.

    Article  CAS  PubMed  Google Scholar 

  11. Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G, Cho KH, Kim KH, Park KC, Eun HC. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol. 2001;117:1218–24.

    Article  CAS  PubMed  Google Scholar 

  12. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379:335–9.

    Article  CAS  PubMed  Google Scholar 

  13. Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16:239–44.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Invest Dermatol Symp Proc. 1998;3:61–8.

    CAS  Google Scholar 

  15. Ma W, Wlaschek M, Tantcheva-Poor I, Schneider LA, Naderi L, Razi-Wolf Z, Schuller J, Scharffetter-Kochanek K. Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin Exp Dermatol. 2001;26:592–9.

    Article  CAS  PubMed  Google Scholar 

  16. Seite S, Zucchi H, Septier D, Igondjo-Tchen S, Senni K, Godeau G. Elastin changes during chronological and photo-ageing: the important role of lysozyme. J Eur Acad Dermatol Venereol. 2006;20:980–7.

    CAS  PubMed  Google Scholar 

  17. Hase T, Shinta K, Murase T, Tokimitsu I, Hattori M, Takimoto R, Tsuboi R, Ogawa H. Histological increase in inflammatory infiltrate in sun-exposed skin of female subjects: the possible involvement of matrix metalloproteinase-1 produced by inflammatory infiltrate on collagen degradation. Br J Dermatol. 2000;142:267–73.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Xia W, Liu Y, Remmer HA, Voorhees J, Fisher GJ. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase. PLoS One. 2013;8:e72563.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cario-Andre M, Lepreux S, Pain C, Nizard C, Noblesse E, Taieb A. Perilesional vs. lesional skin changes in senile lentigo. J Cutan Pathol. 2004;31:441–7.

    Article  PubMed  Google Scholar 

  20. Andersen WK, Labadie RR, Bhawan J. Histopathology of solar lentigines of the face: a quantitative study. J Am Acad Dermatol. 1997;36:444–7.

    Article  CAS  PubMed  Google Scholar 

  21. Unver N, Freyschmidt-Paul P, Horster S, Wenck H, Stab F, Blatt T, Elsasser HP. Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br J Dermatol. 2006;155:119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Chen N, Hu Y, Li WH, Eisinger M, Seiberg M, Lin CB. The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines. Exp Dermatol. 2010;19:865–72.

    Article  CAS  PubMed  Google Scholar 

  23. Iriyama S, Ono T, Aoki H, Amano S. Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal-epidermal junction. J Dermatol Sci. 2011;64:223–8.

    Article  CAS  PubMed  Google Scholar 

  24. Fagot D, Asselineau D, Bernerd F. Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation. Arch Dermatol Res. 2002;293:576–83.

    Article  CAS  PubMed  Google Scholar 

  25. Fagot D, Asselineau D, Bernerd F. Matrix metalloproteinase-1 production observed after solar-simulated radiation exposure is assumed by dermal fibroblasts but involves a paracrine activation through epidermal keratinocytes. Photochem Photobiol. 2004;79:499–505.

    Article  CAS  PubMed  Google Scholar 

  26. Wlaschek M, Tantcheva-Poor I, Naderi L, Ma W, Schneider LA, Razi-Wolf Z, Schuller J, Scharffetter-Kochanek K. Solar UV irradiation and dermal photoaging. J Photochem Photobiol B. 2001;63:41–51.

    Article  CAS  PubMed  Google Scholar 

  27. Krutmann J. Ultraviolet A radiation-induced biological effects in human skin: relevance for photoaging and photodermatosis. J Dermatol Sci. 2000;23 Suppl 1:S22–6.

    Article  CAS  PubMed  Google Scholar 

  28. Commission Internationale de l’Éclairage (CIE). Solar spectral irradiance. Technical report, CIE 085–1989, www.cie.co.at, Vienna; 1989.

    Google Scholar 

  29. Lubin D, Jensen EH. Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature. 1995;377:710–3.

    Article  CAS  Google Scholar 

  30. Sabziparvar AA, Shine KP, Forster PMD. A model-derived global climatology of UV irradiation at the Earth’s surface. Photochem Photobiol. 1999;69:193–202.

    CAS  Google Scholar 

  31. Tewari A, Grage MM, Harrison GI, Sarkany R, Young AR. UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci. 2013;12:95–103.

    Article  CAS  PubMed  Google Scholar 

  32. Seite S, Fourtanier A, Moyal D, Young AR. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review. Br J Dermatol. 2010;163:903–14.

    Article  CAS  PubMed  Google Scholar 

  33. Mahe E, Correa MP, Godin-Beekmann S, Haeffelin M, Jegou F, Saiag P, Beauchet A. Evaluation of tourists’ UV exposure in Paris. J Eur Acad Dermatol Venereol. 2013;27:e294–304.

    Article  CAS  PubMed  Google Scholar 

  34. Eungdamrong NJ, Higgins C, Guo Z, Lee WH, Gillette B, Sia S, Christiano AM. Challenges and promises in modeling dermatologic disorders with bioengineered skin. Exp Biol Med (Maywood). 2014;239:1215–24.

    Article  Google Scholar 

  35. Bernerd F, Asselineau D, Vioux C, Chevallier-Lagente O, Bouadjar B, Sarasin A, Magnaldo T. Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro. Proc Natl Acad Sci U S A. 2001;98:7817–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Haake AR, Polakowska RR. UV-induced apoptosis in skin equivalents: inhibition by phorbol ester and Bcl-2 overexpression. Cell Death Differ. 1995;2:183–93.

    CAS  PubMed  Google Scholar 

  37. Bernerd F, Asselineau D. Successive alteration and recovery of epidermal differentiation and morphogenesis after specific UVB-damages in skin reconstructed in vitro. Dev Biol. 1997;183:123–38.

    Article  CAS  PubMed  Google Scholar 

  38. Vioux-Chagnoleau C, Lejeune F, Sok J, Pierrard C, Marionnet C, Bernerd F. Reconstructed human skin: from photodamage to sunscreen photoprotection and anti-aging molecules. J Dermatol Sci. 2006;2(Suppl):S1–12.

    CAS  Google Scholar 

  39. Fernandez TL, Van Lonkhuyzen DR, Dawson RA, Kimlin MG, Upton Z. Characterization of a human skin equivalent model to study the effects of ultraviolet B radiation on keratinocytes. Tissue Eng Part C Methods. 2014;20:588–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lavker RM, Veres DA, Irwin CJ, Kaidbey KH. Quantitative assessment of cumulative damage from repetitive exposures to suberythemogenic doses of UVA in human skin. Photochem Photobiol. 1995;62:348–52.

    Article  CAS  PubMed  Google Scholar 

  41. Berneburg M, Krutmann J. Mitochondrial DNA deletions in human skin reflect photo- rather than chronologic aging. J Invest Dermatol. 1998;111:709–10.

    Article  CAS  PubMed  Google Scholar 

  42. Bernerd F, Asselineau D. UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: subsequent connective tissue repair and implications in photoaging. Cell Death Differ. 1998;5:792–802.

    Article  CAS  PubMed  Google Scholar 

  43. Marionnet C, Grether-Beck S, Seite S, Marini A, Jaenicke T, Lejeune F, Bastien P, Rougier A, Bernerd F, Krutmann J. A broad-spectrum sunscreen prevents UVA radiation-induced gene expression in reconstructed skin in vitro and in human skin in vivo. Exp Dermatol. 2011;20:477–82.

    Article  CAS  PubMed  Google Scholar 

  44. Meloni M, Farina A, de Servi B. Molecular modifications of dermal and epidermal biomarkers following UVA exposures on reconstructed full-thickness human skin. Photochem Photobiol Sci. 2010;9:439–47.

    Article  CAS  PubMed  Google Scholar 

  45. Dekker P, Parish WE, Green MR. Protection by food-derived antioxidants from UV-A1-induced photodamage, measured using living skin equivalents. Photochem Photobiol. 2005;81:837–42.

    Article  CAS  PubMed  Google Scholar 

  46. Tewari A, Sarkany RP, Young AR. UVA1 induces cyclobutane pyrimidine dimers but not 6–4 photoproducts in human skin in vivo. J Invest Dermatol. 2012;132:394–400.

    Article  CAS  PubMed  Google Scholar 

  47. Huang XX, Bernerd F, Halliday GM. Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am J Pathol. 2009;174:1534–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A. 1996;93:14025–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997;337:1419–28.

    Article  CAS  PubMed  Google Scholar 

  50. Deutsches Institut für Normung e.V.(DIN). Experimentelle Bewertung des Erythemschutzes von externen Sonnenschutzmitteln für die menschliche Haut (Experimental evaluation of the protection from erythema by external sunscreen products for the human skin). Berlin; 1999.

    Google Scholar 

  51. Commission Internationale de l’Eclairage (CIE). Spectral weighting of solar ultraviolet radiation. 2003. www.cie.co.at. CIE 151, Vienna. Ref Type: Report.

  52. Bissonauth V, Drouin R, Mitchell DL, Rhainds M, Claveau J, Rouabhia M. The efficacy of a broad-spectrum sunscreen to protect engineered human skin from tissue and DNA damage induced by solar ultraviolet exposure. Clin Cancer Res. 2000;6:4128–35.

    CAS  PubMed  Google Scholar 

  53. Bernerd F, Vioux C, Lejeune F, Asselineau D. The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation. Eur J Dermatol. 2003;13:242–9.

    CAS  PubMed  Google Scholar 

  54. Christiaens FJ, Chardon A, Fourtanier A, Frederick JE. Standard ultraviolet daylight for nonextreme exposure conditions. Photochem Photobiol. 2005;81:874–8.

    Article  CAS  PubMed  Google Scholar 

  55. Marionnet C, Tricaud C, Bernerd F. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection. Int J Mol Sci. 2014;16:68–90.

    Google Scholar 

  56. Seite S, Medaisko C, Christiaens F, Bredoux C, Compan D, Zucchi H, Lombard D, Fourtanier A. Biological effects of simulated ultraviolet daylight: a new approach to investigate daily photoprotection. Photodermatol Photoimmunol Photomed. 2006;22:67–77.

    Article  PubMed  Google Scholar 

  57. Marionnet C, Pierrard C, Lejeune F, Sok J, Thomas M, Bernerd F. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One. 2010;5:e12059.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Leccia MT, Richard MJ, Joanny-Crisci F, Beani JC. UV-A1 cytotoxicity and antioxidant defence in keratinocytes and fibroblasts. Eur J Dermatol. 1998;8:478–82.

    CAS  PubMed  Google Scholar 

  59. Matsuda M, Hoshino T, Yamakawa N, Tahara K, Adachi H, Sobue G, Maji D, Ihn H, Mizushima T. Suppression of UV-induced wrinkle formation by induction of HSP70 expression in mice. J Invest Dermatol. 2013;133:919–28.

    Article  CAS  PubMed  Google Scholar 

  60. Marionnet C, Pierrard C, Lejeune F, Bernerd F. Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen. J Photochem Photobiol B. 2012;116:37–47.

    Article  CAS  PubMed  Google Scholar 

  61. Norval M, Halliday GM. The consequences of UV-induced immunosuppression for human health. Photochem Photobiol. 2011;87:965–77.

    Article  CAS  PubMed  Google Scholar 

  62. Marionnet C, Lejeune F, Pierrard C, Vioux-Chagnoleau C, Bernerd F. Biological contribution of UVA wavelengths in non extreme daily UV exposure. J Dermatol Sci. 2012;66:238–40.

    Article  CAS  PubMed  Google Scholar 

  63. de Laat A, van der Leun JC, de Gruijl FR. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice. Carcinogenesis. 1997;18(5):1013–20.

    Article  PubMed  Google Scholar 

  64. Damian DL, Matthews YJ, Phan TA, Halliday GM. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Br J Dermatol. 2011;164:657–9.

    CAS  PubMed  Google Scholar 

  65. Wang F, Smith NR, Tran BA, Kang S, Voorhees JJ, Fisher GJ. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatol. 2014;150:401–6.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Marionnet C, Pierrard C, Golebiewski C, Bernerd F. Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS One. 2014;9:e105263.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Tewari A, Sarkany RP, Young AR. UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J Invest Dermatol. 2012; 132:394–400.

    Google Scholar 

  68. York NR, Jacobe HT. UVA1 phototherapy: a review of mechanism and therapeutic application. Int J Dermatol. 2010;49:623–30.

    Article  PubMed  Google Scholar 

  69. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature. 2003;424:516–23.

    Article  CAS  PubMed  Google Scholar 

  70. Kim EJ, Jin XJ, Kim YK, Oh IK, Kim JE, Park CH, Chung JH. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J Dermatol Sci. 2010;57:19–26.

    Article  CAS  PubMed  Google Scholar 

  71. Randhawa M, Southall M, Samaras ST. Metabolomic analysis of sun exposed skin. Mol Biosyst. 2013;9:2045–50.

    Article  CAS  PubMed  Google Scholar 

  72. Duval C, Regnier M, Schmidt R. Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Res. 2001;14:348–55.

    Article  CAS  PubMed  Google Scholar 

  73. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004;17:96–110.

    Article  CAS  PubMed  Google Scholar 

  74. Regnier M, Duval C, Galey JB, Philippe M, Lagrange A, Tuloup R, Schmidt R. Keratinocyte-melanocyte co-cultures and pigmented reconstructed human epidermis: models to study modulation of melanogenesis. Cell Mol Biol. 1999; 45:969–80.

    Google Scholar 

  75. Duval C, Smit NP, Kolb AM, Regnier M, Pavel S, Schmidt R. Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment Cell Res. 2002;15:440–6.

    Article  CAS  PubMed  Google Scholar 

  76. Duval C, Schmidt R, Regnier M, Facy V, Asselineau D, Bernerd F. The use of reconstructed human skin to evaluate UV-induced modifications and sunscreen efficacy. Exp Dermatol. 2003;12(Suppl):64–70.

    Google Scholar 

  77. Gibbs S, Murli S, De BG, Mulder A, Mommaas AM, Ponec M. Melanosome capping of keratinocytes in pigmented reconstructed epidermis-effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis. Pigment Cell Res. 2000;13:458–66.

    Article  CAS  PubMed  Google Scholar 

  78. Bessou S, Surleve-Bazeille JE, Sorbier E, Taieb A. Ex vivo reconstruction of the epidermis with melanocytes and the influence of UVB. Pigment Cell Res. 1995; 8:241–9.

    Article  CAS  PubMed  Google Scholar 

  79. Buffey JA, Messenger AG, Taylor M, Ashcroft AT, Westgate GE, MacNeil S. Extracellular matrix derived from hair and skin fibroblasts stimulates human skin melanocyte tyrosinase activity. Br J Dermatol. 1994;131:836–42.

    Article  CAS  PubMed  Google Scholar 

  80. Hedley SJ, Wagner M, Bielby S, Smith-Thomas L, Gawkrodger DJ, Mac Neil S. The influence of extracellular matrix proteins on cutaneous and uveal melanocytes. Pigment Cell Res. 1997;10:54–9.

    Article  CAS  PubMed  Google Scholar 

  81. Scott G, Cassidy L, Busacco A. Fibronectin suppresses apoptosis in normal human melanocytes through an integrin-dependent mechanism. J Invest Dermatol. 1997;108:147–53.

    Article  CAS  PubMed  Google Scholar 

  82. Yamaguchi Y, Itami S, Watabe H, Yasumoto K, Abdel-Malek ZA, Kubo T, Rouzaud F, Tanemura A, Yoshikawa K, Hearing VJ. Mesenchymal-epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol. 2004;165:275–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Choi W, Wolber R, Gerwat W, Mann T, Batzer J, Smuda C, Liu H, Kolbe L, Hearing VJ. The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin. J Cell Sci. 2010;123:3102–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Yamamoto T, Sawada Y, Katayama I, Nishioka K. Local expression and systemic release of stem cell factor in systemic sclerosis with diffuse hyperpigmentation. Br J Dermatol. 2001;144:199–200.

    Article  CAS  PubMed  Google Scholar 

  85. Shishido E, Kadono S, Manaka I, Kawashima M, Imokawa G. The mechanism of epidermal hyperpigmentation in dermatofibroma is associated with stem cell factor and hepatocyte growth factor expression. J Invest Dermatol. 2001;117:627–33.

    Article  CAS  PubMed  Google Scholar 

  86. Okazaki M, Yoshimura K, Suzuki Y, Uchida G, Kitano Y, Harii K, Imokawa G. The mechanism of epidermal hyperpigmentation in cafe-au-lait macules of neurofibromatosis type 1 (von Recklinghausen’s disease) may be associated with dermal fibroblast-derived stem cell factor and hepatocyte growth factor. Br J Dermatol. 2003;148:689–97.

    Article  CAS  PubMed  Google Scholar 

  87. Cardinali G, Kovacs D, Giglio MD, Cota C, Aspite N, Mantea A, Girolomoni G, Picardo M. A kindred with familial progressive hyperpigmentation-like disorder: implication of fibroblast-derived growth factors in pigmentation. Eur J Dermatol. 2009;19:469–73.

    PubMed  Google Scholar 

  88. Chung H, Jung H, Lee JH, Oh HY, Kim OB, Han IO, Oh ES. Keratinocyte-derived Laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake. J Biol Chem. 2014;289:21751–9.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Imokawa G, Yada Y, Morisaki N, Kimura M. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem J. 1998;330:1235–9.

    Google Scholar 

  90. Mildner M, Mlitz V, Gruber F, Wojta J, Tschachler E. Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation. J Invest Dermatol. 2007;127:2637–44.

    Article  CAS  PubMed  Google Scholar 

  91. Kovacs D, Cardinali G, Aspite N, Cota C, Luzi F, Bellei B, Briganti S, Amantea A, Torrisi MR, Picardo M. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br J Dermatol. 2010;163:1020–7.

    Article  CAS  PubMed  Google Scholar 

  92. Cario-Andre M, Pain C, Gauthier Y, Casoli V, Taieb A. In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment Cell Res. 2006;19:434–42.

    Article  PubMed  Google Scholar 

  93. Souto LR, Rehder J, Vassallo J, Cintra ML, Kraemer MH, Puzzi MB. Model for human skin reconstructed in vitro composed of associated dermis and epidermis. Sao Paulo Med J. 2006;124:71–6.

    Article  PubMed  Google Scholar 

  94. Okazaki M, Suzuki Y, Yoshimura K, Harii K. Construction of pigmented skin equivalent and its application to the study of congenital disorders of pigmentation. Scand J Plast Reconstr Surg Hand Surg. 2005;39:339–43.

    Article  PubMed  Google Scholar 

  95. Duval C, Chagnoleau C, Pouradier F, Sextius P, Condom E, Bernerd F. Human skin model containing melanocytes: essential role of keratinocyte growth factor for constitutive pigmentation-functional response to alpha-melanocyte stimulating hormone and forskolin. Tissue Eng Part C Methods. 2012;18:947–57.

    Article  CAS  PubMed  Google Scholar 

  96. Shin J, Kim JH, Kim EK. Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence. J Eur Acad Dermatol Venereol. 2012;26:1577–80.

    CAS  PubMed  Google Scholar 

  97. Hirobe T, Hasegawa K, Furuya R, Fujiwara R, Sato K. Effects of fibroblast-derived factors on the proliferation and differentiation of human melanocytes in culture. J Dermatol Sci. 2013;71:45–57.

    Article  CAS  PubMed  Google Scholar 

  98. Salducci M, Andre N, Guere C, Martin M, Fitoussi R, Vie K, Cario-Andre M. Factors secreted by irradiated aged fibroblasts induce solar lentigo in pigmented reconstructed epidermis. Pigment Cell Melanoma Res. 2014;27:502–4.

    Article  PubMed  Google Scholar 

  99. Duval C, Cohen C, Chagnoleau C, Flouret V, Bourreau E, Bernerd F. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging. PLoS One. 2014;9:e114182.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Pouyani T, Papp S, Schaffer L. Tissue-engineered fetal dermal matrices. In Vitro Cell Dev Biol Anim. 2012;48:493–506.

    Article  CAS  PubMed  Google Scholar 

  101. Namazi MR, Fallahzadeh MK, Schwartz RA. Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol. 2011;50:85–93.

    Article  PubMed  Google Scholar 

  102. Varani J, Schuger L, Dame MK, Leonard C, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol. 2004;122:1471–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Marionnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Marionnet, C., Duval, C., Bernerd, F. (2015). New Insights in Photoaging Process Revealed by In Vitro Reconstructed Skin Models. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics