Skip to main content

Alternative Energy: Sources and Future Trends

  • Reference work entry
  • First Online:
Affordable and Clean Energy

Definitions

The expression “alternative energy” relates to energy sources other than “main” energy sources, usually fossil fuels, considering that there is some overlapping between the definition of “alternative energy” and the concept of “renewable energies,” such as wind, solar, hydroelectric, biomass, biogas, animal waste, geothermal, hydrogen, and marine energies. Alternative energy could refer to energy that does not come from coal, oil, natural gas, or wood.

Broadly speaking, “alternative energy” can also refer to energy conservation and efficiency, since they are complementary sources of energy insofar as they help produce less energy (Tomain and Cudahy 2004). In this sense, the concept is also referred to “alternative energy technologies,” where, for example, a wood-fired oven is replaced by a biogas-fired oven or solar cookers, or where natural gas is substituted by solar power for water heating systems (Pokharel 2003).

The expression is also used within the context of energy...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeeolica (2018) Infowind Brazil, vol 6. Available at: http://www.abeeolica.org.br/wp-content/uploads/2018/04/06_Infovento_ingles_online.pdf

  • Aghahosseini A, Bogdanov D, Breyer C (2017) A techno-economic study of an entirely renewable energy-based power supply for North America for 2030 conditions. Energies 10:1–28

    Google Scholar 

  • Barbosa L, Bogdanov D, Vainikka P, Breyer C (2017) Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America. PLoS One 12

    Google Scholar 

  • Brown TW, Bischof-Niemz T, Blok K, Breyer C, Mathiesen BV (2018) Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew Sust Energ Rev 92:834–847

    Google Scholar 

  • Cottrell F (1955) Energy and society – the relation between energy, social change and economic development. McGraw-Hill, New York

    Google Scholar 

  • Deffeyes KS (2008) Hubbert’s peak: the impending world oil shortage. Princeton University Press, Princeton

    Google Scholar 

  • Energy Watch Group (2008) Crude oil: the supply outlook. EWG-series 3. Available at: http://energywatchgroup.org/wp-content/uploads/2018/01/2008-02_EWG_Oil_Report_updated.pdf

  • European Commission (2011) Communication of the commission “renewable energy: progressing towards the 2020 target”. COM (2011) 31 final

    Google Scholar 

  • Fauset C (2010) The techno-fix approach to climate change and the energy crisis. In: Abramsky K (ed) Sparking a worldwide energy revolution. AK Press, Oakland

    Google Scholar 

  • Georgescu-Roegen N (1971) The entropy law and the economic process. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Giddens A (2009) The politics of climate change. Polity Press, Cambridge, UK

    Google Scholar 

  • Goldemberg J, Lucon O (2012) Energia, meio ambiente e sustentabilidade. Edusp, Sço Paulo, Brazil

    Google Scholar 

  • Guimarães LNMRG (2013) Regulação da exploração da eletricidade: compatibilidade com as leis da natureza e com a ordem econômica constitucional. CRV, Curitiba, Brazil

    Google Scholar 

  • Guimarães LNMRG (ed) (2020a) The regulation and policy of Latin American energy transitions. Elsevier, Oxford, UK

    Google Scholar 

  • Guimarães LNMRG (2020b) Is there a Latin American electricity transition? A snapshot of intraregional differences. In: Guimarães LNMRG (ed) The regulation and policy of Latin American energy transitions. Elsevier, Oxford, UK

    Google Scholar 

  • GWEC (2018) Global statistics. Available at: http://gwec.net/wp-content/uploads/2018/04/5_Top-10-cumulative-capacity-Dec-2017-1.jpg

  • Hanger-Kopp S, Lieu J, Nikas A (eds) (2019) Narratives of low-carbon transitions – understanding risks and uncertainties. Routledge, London/New York

    Google Scholar 

  • Hansen K, Breyer C, Lund H (2019) Status and perspectives on 100% renewable energy systems. Energy 175:471–480

    Google Scholar 

  • Heinberg R (2005) The party’s over: oil, war, and the fate of industrial societies, 2nd edn. New Society Publishers, Gabriola Island

    Google Scholar 

  • Hémery D, Debeir JC, Deléage JP (1986) Les servitudes de la puissance: une histoire de l’énergie. Flammarion, Paris

    Google Scholar 

  • International Energy Agency (2011a) World energy outlook 2011. IEA, Paris

    Book  Google Scholar 

  • International Energy Agency (2011b) IEA analysis of fossil fuel subsidies. IEA, Paris

    Google Scholar 

  • International Energy Agency (2015) Energy and climate change. IEA, Paris

    Google Scholar 

  • International Energy Agency (2019) Renewables 2019. IEA, Paris

    Book  Google Scholar 

  • Jenkins KEH, Hopkins D (eds) (2019) Transitions in energy efficiency and demand. Routledge, United Kingdom

    Google Scholar 

  • Kloppenburg S, Boekelo M (2019) Digital platforms and the future of energy provisioning: promises and perils for the next phase of the energy transition. Energy Res Soc Sci 49:68–73

    Google Scholar 

  • Leggett J (2006) Peak oil. Die globale Energiekrise, die Klimakatastrophe und das Ende des Ölzeitalters. Kiepenheuer & Witsch GmbH, Köln

    Google Scholar 

  • Lomborg B (2001) The skeptical environmentalist: measuring the real state of the world. Cambridge University Press, New York

    Book  Google Scholar 

  • Meadows D, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth. Potomac Associates, New York

    Google Scholar 

  • Miller C, Iles A, Jones C (2013) The social dimensions of energy transitions. Sci Cult 22:135–148

    Google Scholar 

  • Mills RM (2008) The myth of the oil crisis: overcoming the challenges of depletion, geopolitics and global warming. Praeger, Westport

    Google Scholar 

  • Orkustofnun (2016) Energy statistics in Iceland 2016. Iceland. Available at: https://orkustofnun.is/gogn/os-onnur-rit/Orkutolur-2016-enska.pdf

  • Pokharel S (2003) Promotional issues on alternative energy technologies in Nepal. Energy Policy 31:307–318

    Google Scholar 

  • PricewaterhouseCoopers (2010) 100% renewable electricity. A roadmap to 2050 for Europe and North Africa. PwC, USA

    Google Scholar 

  • Reis LB, Silveira S (2012) Energia elétrica para o desenvolvimento sustentável. Edusp, São Paulo

    Google Scholar 

  • Renewable Energy Policy Network for the 21st Century (2019) Renewable Global Status Report

    Google Scholar 

  • Rifkin J (2011) The third industrial revolution. Palgrave Macmillan, New York

    Google Scholar 

  • Scheer H (2010) Der energetische Imperativ. Verlag Antje Kunstmann, München

    Google Scholar 

  • Sioshansi F (2020) Behind and beyond the meter – utilization, optimization and monetization. Associated Press, USA

    Google Scholar 

  • Sovacool BK, Hirsh RF (2009) Beyond batteries: an examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy 37:1095–1103

    Google Scholar 

  • Tarasova E (2018) (Non) alternative energy transitions: examining neoliberal rationality in official nuclear energy discourses of Russia and Poland. Energy Res Soc Sci 41:128–135

    Google Scholar 

  • Tomain JP, Cudahy RD (2004) Energy law in a nutshell. Thomson West, St. Paul

    Google Scholar 

  • Umweltbundesamt (2010) Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Germany

    Google Scholar 

  • United Nations (2015) Transforming our world: the 2030 agenda for sustainable development

    Google Scholar 

  • United Nations Environment Programme, BloombergNEF, Frankfurt School (2019) Global trends in renewable energy investment 2019. Frankfurt School-UNEP Centre/BNEF, Frankfurt, Germany

    Google Scholar 

  • Veiga JE (2013) A desgovernança mundial da sustentabilidade. Editora 34, São Paulo

    Google Scholar 

  • Volz R (2012) Genossenschaften im Bereich erneuerbarer Energien. Veröffentlichungen der Forschungsstelle für Genossenschaftswesen an der Universität Hohenheim, Stuttgart

    Google Scholar 

  • Wilson C, Grubler A (2011) Lessons from the history of technological change for clean energy scenarios and policies. Nat Res Forum 35:165–184

    Google Scholar 

  • Youngquist W (1997) Geodestinies: the inevitable control of earth resources over nations and individuals. National Book Company, Portland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Noura de Moraes Rêgo Guimarães .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guimarães, L.N.d.M.R. (2021). Alternative Energy: Sources and Future Trends. In: Leal Filho, W., Marisa Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-95864-4_1

Download citation

Publish with us

Policies and ethics