Skip to main content

Management of Anemia in Peritoneal Dialysis Patients

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis
  • 63 Accesses

Abstract

Anemia is a common complication among patients undergoing peritoneal dialysis (PD), impacting quality of life and associated with increased mortality. Erythropoietin deficiency, absolute and functional iron deficiency, and shortened red blood cell (RBC) life span contribute to the anemia. Evaluation includes assessment of iron stores and, if deficient, iron supplementation is the initial therapy. The formulation and route of administration of iron is based on tolerability and previous response to treatment. Less frequent dosing of intravenous iron may be desirable for patients on PD due to lack of readily available intravenous access. Erythropoietin stimulating agents (ESAs) remain the cornerstone of anemia therapy. ESAs with a longer dosing interval are generally preferred for PD patients. Randomized controlled trials have demonstrated increased major cardiovascular events with higher hemoglobin targets and ESA doses; the mechanism is incompletely understood. It is recommended that the hemoglobin target for most patients receiving ESAs should not exceed 11.5 g/dL. The discovery of hepcidin and the oxygen sensing pathway in the kidney has increased our understanding of the mechanism for the development of anemia in patients with kidney disease. Increased levels of hepcidin due to inflammation decrease iron absorption and internal mobilization, leading to functional iron deficiency. Hypoxia-induced factor prolyl hydroxylase inhibitors (HIF-PHIs) stimulate endogenous erythropoietin production and improve iron delivery to the bone marrow, thereby increasing RBC production. Some long-term studies of these agents to date have revealed safety signals compared to ESAs, but HIF-PHIs have not been extensively studied in the PD population. Due to their oral route of administration, HIF-PHIs may have an advantage in PD patients over ESAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Locatelli F, Nissenson AR, Barrett BJ, Walker RG, Wheeler DC, Eckardt KU, et al. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2008;74(10):1237–40.

    Article  PubMed  Google Scholar 

  2. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    Article  CAS  PubMed  Google Scholar 

  3. Fried W. Erythropoietin. Arch Intern Med. 1973;131(6):929–38.

    Article  CAS  PubMed  Google Scholar 

  4. Mulcahy L. The erythropoietin receptor. Semin Oncol. 2001;28(2 Suppl 8):19–23.

    Article  CAS  PubMed  Google Scholar 

  5. Wang CQ, Udupa KB, Lipschitz DA. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol. 1995;162(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  6. Taniguchi S, Dai CH, Price JO, Krantz SB. Interferon gamma downregulates stem cell factor and erythropoietin receptors but not insulin-like growth factor-I receptors in human erythroid colony-forming cells. Blood. 1997;90(6):2244–52.

    Article  CAS  PubMed  Google Scholar 

  7. Fishbane S, Besarab A. Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol. 2007;2(6):1274–82.

    Article  CAS  PubMed  Google Scholar 

  8. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Besarab A, Coyne DW. Iron supplementation to treat anemia in patients with chronic kidney disease. Nat Rev Nephrol. 2010;6(12):699–710.

    Article  CAS  PubMed  Google Scholar 

  10. Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol. 2006;1(Suppl 1):S4–8.

    Article  CAS  PubMed  Google Scholar 

  11. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480(2–3):147–50.

    Article  CAS  PubMed  Google Scholar 

  12. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–10.

    Article  CAS  PubMed  Google Scholar 

  13. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–9.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka T, Nangaku M. Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res. 2012;318(9):1068–73.

    Article  CAS  PubMed  Google Scholar 

  19. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation. 2007;116(7):774–81.

    Article  CAS  PubMed  Google Scholar 

  20. Rolfs A, Kvietikova I, Gassmann M, Wenger RH. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem. 1997;272(32):20055–62.

    Article  CAS  PubMed  Google Scholar 

  21. Bianchi L, Tacchini L, Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res. 1999;27(21):4223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999;274(34):24142–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood. 2010;116(16):3039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forristal CE, Winkler IG, Nowlan B, Barbier V, Walkinshaw G, Levesque JP. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood. 2013;121(5):759–69.

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal R. Nonhematological benefits of iron. Am J Nephrol. 2007;27(6):565–71.

    Article  CAS  PubMed  Google Scholar 

  27. Bhandari S. Risk factors and metabolic mechanisms in the pathogenesis of uraemic cardiac disease. Front Biosci (Landmark Ed). 2011;16:1364–87.

    Article  CAS  Google Scholar 

  28. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10(3):610–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32.

    Article  PubMed  Google Scholar 

  30. Silberberg JS, Rahal DP, Patton DR, Sniderman AD. Role of anemia in the pathogenesis of left ventricular hypertrophy in end-stage renal disease. Am J Cardiol. 1989;64(3):222–4.

    Article  CAS  PubMed  Google Scholar 

  31. Foley RN, Curtis BM, Parfrey PS. Erythropoietin therapy, hemoglobin targets, and quality of life in healthy hemodialysis patients: a randomized trial. Clin J Am Soc Nephrol. 2009;4(4):726–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. KDIGO Clinical practice guideline for anemia in chronic kidney disease 2012. Available from: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-Anemia-Guideline-English.pdf. Accessed 31 Aug 2021.

  33. Kelsey SM, Hider RC, Bloor JR, Blake DR, Gutteridge CN, Newland AC. Absorption of low and therapeutic doses of ferric maltol, a novel ferric iron compound, in iron deficient subjects using a single dose iron absorption test. J Clin Pharm Ther. 1991;16(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  34. Solomon SD, Uno H, Lewis EF, Eckardt KU, Lin J, Burdmann EA, et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med. 2010;363(12):1146–55.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari P, Kulkarni H, Dheda S, Betti S, Harrison C, St Pierre TG, et al. Serum iron markers are inadequate for guiding iron repletion in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Longnecker RE, Goffinet JA, Hendler ED. Blood loss during maintenance hemodialysis. Trans Am Soc Artif Intern Organs. 1974;20A:135–40.

    CAS  PubMed  Google Scholar 

  37. Pandey R, Daloul R, Coyne DW. Iron treatment strategies in dialysis-dependent CKD. Semin Nephrol. 2016;36(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  38. Locatelli F, Barany P, Covic A, De Francisco A, Del Vecchio L, Goldsmith D, et al. Kidney disease: improving global outcomes guidelines on anaemia management in chronic kidney disease: a European renal best practice position statement. Nephrol Dial Transplant. 2013;28(6):1346–59.

    Article  CAS  PubMed  Google Scholar 

  39. Wish JB. Intravenous iron: not just for hemodialysis patients anymore. Perit Dial Int. 2008;28(2):126–9.

    Article  PubMed  Google Scholar 

  40. Santiago P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. ScientificWorldJournal. 2012;2012:846824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dwyer JP, Sika M, Schulman G, Chang IJ, Anger M, Smith M, et al. Dose-response and efficacy of ferric citrate to treat hyperphosphatemia in hemodialysis patients: a short-term randomized trial. Am J Kidney Dis. 2013;61(5):759–66.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis JB, Sika M, Koury MJ, Chuang P, Schulman G, Smith MT, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis. J Am Soc Nephrol. 2015;26(2):493–503.

    Article  PubMed  CAS  Google Scholar 

  43. Umanath K, Jalal DI, Greco BA, Umeukeje EM, Reisin E, Manley J, et al. Ferric citrate reduces intravenous iron and erythropoiesis-stimulating agent use in ESRD. J Am Soc Nephrol. 2015;26(10):2578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrand MA, Callingham BA, Dobbin P, Hider RC. Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat. Br J Pharmacol. 1991;102(3):723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pisoni RL, Bragg-Gresham JL, Young EW, Akizawa T, Asano Y, Locatelli F, et al. Anemia management and outcomes from 12 countries in the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis. 2004;44(1):94–111.

    Article  PubMed  Google Scholar 

  46. Perlman RL, Zhao J, Fuller DS, Bieber B, Li Y, Pisoni RL, et al. International anemia prevalence and management in peritoneal dialysis patients. Perit Dial Int. 2019;39(6):539–46.

    Article  PubMed  Google Scholar 

  47. Auerbach M, Ballard H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology Am Soc Hematol Educ Program. 2010;2010:338–47.

    Article  PubMed  Google Scholar 

  48. Danielson BG. Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol. 2004;15(Suppl 2):S93–8.

    PubMed  Google Scholar 

  49. Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmen J. On the relative safety of parenteral iron formulations. Nephrol Dial Transplant. 2004;19(6):1571–5.

    Article  CAS  PubMed  Google Scholar 

  50. Fishbane S, Ungureanu VD, Maesaka JK, Kaupke CJ, Lim V, Wish J. The safety of intravenous iron dextran in hemodialysis patients. Am J Kidney Dis. 1996;28(4):529–34.

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Graham DJ, Kane RC, Xie D, Wernecke M, Levenson M, et al. Comparative risk of anaphylactic reactions associated with intravenous iron products. JAMA. 2015;314(19):2062–8.

    Article  CAS  PubMed  Google Scholar 

  52. Folkert VW, Michael B, Agarwal R, Coyne DW, Dahl N, Myirski P, et al. Chronic use of sodium ferric gluconate complex in hemodialysis patients: safety of higher-dose (> or =250 mg) administration. Am J Kidney Dis. 2003;41(3):651–7.

    Article  CAS  PubMed  Google Scholar 

  53. Aronoff GR, Bennett WM, Blumenthal S, Charytan C, Pennell JP, Reed J, et al. Iron sucrose in hemodialysis patients: safety of replacement and maintenance regimens. Kidney Int. 2004;66(3):1193–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kalra PA, Bhandari S. Efficacy and safety of iron isomaltoside (Monofer((R))) in the management of patients with iron deficiency anemia. Int J Nephrol Renovasc Dis. 2016;9:53–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhandari S, Kalra PA, Berkowitz M, Belo D, Thomsen LL, Wolf M. Safety and efficacy of iron isomaltoside 1000/ferric derisomaltose versus iron sucrose in patients with chronic kidney disease: the FERWON-NEPHRO randomized, open-label, comparative trial. Nephrol Dial Transplant. 2021;36(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  56. Ficheux M, Cuny P, Lecouf A, Ryckelynck JP, Hurault de Ligny B, Lobbedez T. Treatment of iron deficiency by a bolus intravenous iron dextran in peritoneal dialysis. Nephrol Ther. 2011;7(7):558–61.

    Article  PubMed  Google Scholar 

  57. Solak Y, Atalay H, Guney I, Turkmen K, Kaya E, Turk S. Comparison of adverse-event profiles of intravenous low-molecular-weight iron dextran and iron sucrose in peritoneal dialysis patients. Ren Fail. 2011;33(3):307–11.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta A, Zhuo J, Zha J, Reddy S, Olp J, Pai A. Effect of different intravenous iron preparations on lymphocyte intracellular reactive oxygen species generation and subpopulation survival. BMC Nephrol. 2010;11:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zager RA, Johnson AC, Hanson SY. Parenteral iron therapy exacerbates experimental sepsis. Kidney Int. 2004;65(6):2108–12.

    Article  CAS  PubMed  Google Scholar 

  60. Zager RA, Johnson AC, Hanson SY, Lund S. Parenteral iron compounds sensitize mice to injury-initiated TNF-alpha mRNA production and TNF-alpha release. Am J Physiol Renal Physiol. 2005;288(2):F290–7.

    Article  CAS  PubMed  Google Scholar 

  61. Singh H, Reed J, Noble S, Cangiano JL, Van Wyck DB. United States iron sucrose clinical trials G. effect of intravenous iron sucrose in peritoneal dialysis patients who receive erythropoiesis-stimulating agents for anemia: a randomized, controlled trial. Clin J Am Soc Nephrol. 2006;1(3):475–82.

    Article  CAS  PubMed  Google Scholar 

  62. Macdougall IC, White C, Anker SD, Bhandari S, Farrington K, Kalra PA, et al. Intravenous iron in patients undergoing maintenance hemodialysis. N Engl J Med. 2019;380(5):447–58.

    Article  CAS  PubMed  Google Scholar 

  63. Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J. Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol. 2010;66(4):331–40.

    Article  CAS  PubMed  Google Scholar 

  64. Wish JB. Biosimilars-emerging role in nephrology. Clin J Am Soc Nephrol. 2019;14(9):1391–8.

    Article  CAS  PubMed  Google Scholar 

  65. Germain M, Ram CV, Bhaduri S, Tang KL, Klausner M, Curzi M. Extended epoetin alfa dosing in chronic kidney disease patients: a retrospective review. Nephrol Dial Transplant. 2005;20(10):2146–52.

    Article  CAS  PubMed  Google Scholar 

  66. Provenzano R, Bhaduri S, Singh AK, Group PS. Extended epoetin alfa dosing as maintenance treatment for the anemia of chronic kidney disease: the PROMPT study. Clin Nephrol. 2005;64(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  67. Jadoul M, Vanrenterghem Y, Foret M, Walker R, Gray SJ. Darbepoetin alfa administered once monthly maintains haemoglobin levels in stable dialysis patients. Nephrol Dial Transplant. 2004;19(4):898–903.

    Article  CAS  PubMed  Google Scholar 

  68. Evans RW, Rader B, Manninen DL. The quality of life of hemodialysis recipients treated with recombinant human erythropoietin. Cooperative Multicenter EPO clinical trial group. JAMA. 1990;263(6):825–30.

    Article  CAS  PubMed  Google Scholar 

  69. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339(9):584–90.

    Article  CAS  PubMed  Google Scholar 

  70. Coyne DW. The health-related quality of life was not improved by targeting higher hemoglobin in the normal hematocrit trial. Kidney Int. 2012;82(2):235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355(20):2071–84.

    Article  CAS  PubMed  Google Scholar 

  72. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    Article  CAS  PubMed  Google Scholar 

  73. Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74(6):791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. FDA Drug Safety Communication: Modified dosing recommendations to improve the safe use of Erythropoiesis-Stimulating Agents (ESAs) in chronic kidney disease. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-modified-dosing-recommendations-improve-safe-use-erythropoiesis. Accessed 31 Aug 2021.

  75. Wang C, Kane R, Levenson M, Kelman J, Wernecke M, Lee JY, et al. Association between changes in CMS reimbursement policy and drug labels for erythrocyte-stimulating agents with outcomes for older patients undergoing Hemodialysis covered by fee-for-service Medicare. JAMA Intern Med. 2016;176(12):1818–25.

    Article  PubMed  Google Scholar 

  76. Chertow GM, Liu J, Monda KL, Gilbertson DT, Brookhart MA, Beaubrun AC, et al. Epoetin alfa and outcomes in dialysis amid regulatory and payment reform. J Am Soc Nephrol. 2016;27(10):3129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–78.

    Article  CAS  PubMed  Google Scholar 

  78. Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol. 2016;310(4):C260–9.

    Article  PubMed  Google Scholar 

  79. Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for Anemia in patients with CKD. Am J Kidney Dis. 2017;69(6):815–26.

    Article  CAS  PubMed  Google Scholar 

  80. Akebia and Otsuka Announce FDA acceptance for filing of new drug application for Vadadustat for the treatment of anemia due to chronic kidney disease in adult patients on dialysis and not on dialysis. Available from: https://ir.akebia.com/news-releases/news-release-details/akebia-and-otsuka-announce-fda-acceptance-filing-new-drug. Accessed 31 Aug 2021.

  81. Chen N, Hao C, Liu BC, Lin H, Wang C, Xing C, et al. Roxadustat treatment for Anemia in patients undergoing long-term dialysis. N Engl J Med. 2019;381(11):1011–22.

    Article  CAS  PubMed  Google Scholar 

  82. Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 2019;381(11):1001–10.

    Article  CAS  PubMed  Google Scholar 

  83. Zheng Q, Yang H, Sun L, Wei R, Fu X, Wang Y, et al. Efficacy and safety of HIF prolyl-hydroxylase inhibitor vs epoetin and darbepoetin for anemia in chronic kidney disease patients not undergoing dialysis: a network meta-analysis. Pharmacol Res. 2020;159:105020.

    Article  CAS  PubMed  Google Scholar 

  84. Coyne DW, Roger SD, Shin SK, Kim SG, Cadena AA, Moustafa MA, et al. Roxadustat for CKD-related anemia in non-dialysis patients. Kidney Int Rep. 2021;6(3):624–35.

    Article  PubMed  Google Scholar 

  85. Fishbane S, El-Shahawy MA, Pecoits-Filho R, Van BP, Houser MT, Frison L, et al. Roxadustat for treating anemia in patients with CKD not on dialysis: results from a randomized phase 3 study. J Am Soc Nephrol. 2021;32(3):737–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barratt J, Andric B, Tataradze A, Schomig M, Reusch M, Valluri U, et al. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a phase 3, randomised, open-label, active-controlled study (DOLOMITES). Nephrol Dial Transplant. 2021;

    Google Scholar 

  87. Provenzano R, Fishbane S, Szczech L, Leong R, Saikali KG, Zhong M, et al. Pooled analysis of Roxadustat for anemia in patients with kidney failure incident to dialysis. Kidney Int Rep. 2021;6(3):613–23.

    Article  PubMed  Google Scholar 

  88. FibroGen. FibroGen provides additional information on Roxadustat. Available from: https://investor.fibrogen.com/news-releases/news-release-details/fibrogen-provides-additional-information-roxadustat. Accessed 22 Jan 2020.

  89. Provenzano R, Shutov E, Eremeeva L, Korneyeva S, Poole L, Saha G, et al. Roxadustat for anemia in patients with end-stage renal disease incident to dialysis. Nephrol Dial Transplant. 2021;36(9):1717–1730.

    Google Scholar 

  90. Astellas. Clinical. Trial data disclosure. Clinical study result, PYRENEES. Available from: https://astellasclinicalstudyresults.com/study.aspx?ID=364. Accessed 22 Jan 2020.

  91. Charytan C, Manllo-Karim R, Martin ER, Steer D, Bernardo M, Dua SL, et al. A randomized trial of Roxadustat in Anemia of kidney failure: SIERRAS study. Kidney Int Rep. 2021;6(7):1829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Provenzano RFS, Coyne D, et al., editor. Roxadustat treatment of anemia in non-dialysis-dependent CKD is not influenced by iron status. Oral presentation TH-OR03. American Society of Nephrology Kidney Week 2020 Reimagined, October 22–25, 2020; 2020.

    Google Scholar 

  93. Akizawa T, Otsuka T, Reusch M, Ueno M. Intermittent oral dosing of Roxadustat in peritoneal dialysis chronic kidney disease patients with anemia: a randomized, phase 3, Multicenter, open-label study. Ther Apher Dial. 2020;24(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  94. Hirai K, Nonaka H, Ueda M, Morino J, Kaneko S, Minato S, et al. Effects of Roxadustat on the anemia and iron metabolism of patients undergoing peritoneal dialysis. Front Med (Lausanne). 2021;8:667117.

    Article  Google Scholar 

  95. Chertow GM, Pergola PE, Farag YMK, Agarwal R, Arnold S, Bako G, et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N Engl J Med. 2021;384(17):1589–600.

    Article  CAS  PubMed  Google Scholar 

  96. Eckardt KU, Agarwal R, Aswad A, Awad A, Block GA, Bacci MR, et al. Safety and efficacy of Vadadustat for anemia in patients undergoing dialysis. N Engl J Med. 2021;384(17):1601–12.

    Article  CAS  PubMed  Google Scholar 

  97. Nangaku M, Kondo K, Takabe S, Ueta K, Kaneko G, Otsuka M, et al. Vadadustat for anemia in chronic kidney disease patients on peritoneal dialysis: a phase 3 open-label study in Japan. Ther Apher Dial. 2021;25(5):642–653.

    Google Scholar 

  98. Nangaku M, Hamano T, Akizawa T, Tsubakihara Y, Nagai R, Okuda N, et al. Daprodustat compared with Epoetin Beta Pegol for anemia in Japanese patients not on dialysis: a 52-week randomized open-label phase 3 trial. Am J Nephrol. 2021;52(1):26–35.

    CAS  PubMed  Google Scholar 

  99. Ishii T, Tanaka T, Nangaku M. Profile of Daprodustat in the treatment of renal Anemia due to chronic kidney disease. Ther Clin Risk Manag. 2021;17:155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  100. GSK announces positive headline results from five Phase 3 studies of daprodustat for patients with anaemia due to chronic kidney disease. Available from: https://www.gsk.com/en-gb/media/press-releases/gsk-announces-daprodustat-phase-3-headline-results. Accessed 31 Aug 2021.

  101. Akizawa T, Nobori K, Matsuda Y, Taki K, Hayashi Y, Hayasaki T, et al. Molidustat for the treatment of anemia in Japanese patients undergoing peritoneal dialysis: a single-arm, open-label, phase 3 study. Ther Apher Dial. 2022;26(2):368–377.

    Google Scholar 

  102. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Young B, Zaritsky J. Hepcidin for clinicians. Clin J Am Soc Nephrol. 2009;4(8):1384–7.

    Article  CAS  PubMed  Google Scholar 

  104. Theurl I, Schroll A, Sonnweber T, Nairz M, Theurl M, Willenbacher W, et al. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood. 2011;118(18):4977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schwoebel F, van Eijk LT, Zboralski D, Sell S, Buchner K, Maasch C, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pergola PE, Devalaraja M, Fishbane S, Chonchol M, Mathur VS, Smith MT, et al. Ziltivekimab for treatment of Anemia of inflammation in patients on Hemodialysis: results from a phase 1/2 Multicenter, randomized, double-blind, placebo-controlled trial. J Am Soc Nephrol. 2021;32(1):211–22.

    Article  CAS  PubMed  Google Scholar 

  107. Aberle J, Menzen M, Schmid SM, Terkamp C, Jaeckel E, Rohwedder K, et al. Dapagliflozin effects on haematocrit, red blood cell count and reticulocytes in insulin-treated patients with type 2 diabetes. Sci Rep. 2020;10(1):22396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stefansson BV, Heerspink HJL, Wheeler DC, Sjostrom CD, Greasley PJ, Sartipy P, et al. Correction of anemia by dapagliflozin in patients with type 2 diabetes. J Diabetes Complicat. 2020;34(12):107729.

    Article  Google Scholar 

  109. Oshima M, Neuen BL, Jardine MJ, Bakris G, Edwards R, Levin A, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8(11):903–14.

    Article  CAS  PubMed  Google Scholar 

  110. PROCRIT (PACKAGE INSERT). Available from: http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/PROCRIT-pi.pdf. Accessed 31 Aug 2021.

  111. ARANESP (PACKAGE INSERT). Available from: https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/aranesp/ckd/aranesp_pi_hcp_english.pdf. Accessed 31 Aug 2021.

  112. Mircera (PACKAGE INSERT). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125164s078lbl.pdf. Accessed 31 Aug 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay B. Wish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, N., Wish, J.B. (2022). Management of Anemia in Peritoneal Dialysis Patients. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics