Skip to main content

Long-Term Peritoneal Dialysis

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis
  • 33 Accesses

Abstract

The improved patient and technique survival on chronic PD makes assessment of the peritoneum as a dialysis membrane more important than previously. The focus of the present review is on the possible role of genetics, longitudinal assessment of some biomarkers in peritoneal cells and effluent, and the time course of the various pathways of fluid small solute and protein transport that can be assessed in peritoneal dialysis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. van de Luijtgaarden MWM, Jager KJ, Segelmark M, Pascual J, Collart F, Hemke AC, et al. Trends in dialysis modality and related patient survival in the ERA-EDTA Registry over a 20-year peritod. Nephrol Dial Transplant. 2016;31:120–8.

    Article  PubMed  Google Scholar 

  2. Saran R, Robinson B, Abbot KC, Agodoa LYC, Begg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Report. Epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019;73(suppl 1):S411–26.

    Google Scholar 

  3. Wong B, Ravani P, Oliver M, Holroyd-Leduc J, Ventarurato L, Garg AX, et al. Comparison of patient survival between hemodialysis and peritoneal dialysis among patients eligible for both modalities. Am J Kidney Dis. 2018;71:344–51.

    Article  PubMed  Google Scholar 

  4. Wang I-K, Lin C-L, Yen T-H, Lin S-Y, Sung F-C. Comparison of survival between hemodialysis and peritoneal dialysis patients with end-stage renal disease in the era of icodextrin treatment. Eur J Int Med. 2018;50:69–74.

    Article  CAS  Google Scholar 

  5. Sloan CE, Coffman CJ, Sanders LL, Maciejewski ML, Lee SD, Hirth RA et al. Trends in peritoneal dialysis use in the United States after Medicare payment reform. Clin J Am Soc Nephrol. 2019. https://doi.org/10.2215/CJN.05910519.

  6. Krediet RT, Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol. 2013;9:419–29.

    Article  CAS  PubMed  Google Scholar 

  7. Taranu T, Florea L, Paduraru D, Georescu SO, Francu L, Stan CI. Morphological changes of the peritoneal membrane in patients with long-term dialysis. Romanian J Morphol Embryol. 2014;55:927–32.

    Google Scholar 

  8. Del Peso G, Jimenez-Heffernan JA, Bajo MA, Aquilera A, Fernando-Perpin A, et al. Epithelial- to –mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int. 2008;73:S26–33.

    Article  CAS  Google Scholar 

  9. Siddique I, Brimble KS, Walkin L, Summers A, Brenchley P, Herrick S, et al. Genetic polymorphisms and peritoneal membrane function. Perit Dial Int. 2015;35:517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillerot G, Goffin E, Michel C, Evenepoel P, van Biesen W, Tintillier M, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int. 2005;67:2477–87.

    Article  PubMed  Google Scholar 

  11. Lee TY, Tsai YC, Yang YK, Hsu KT, Liao SN, Wu CH, et al. Association between between interleukin-10 gene polymorphism-592 (A/C) and peritoneal transport in patients undergoing peritoneal dialysis. Nephrology (Carlton). 2011;16:663–71.

    CAS  Google Scholar 

  12. Maruyama Y, Numata M, Nakayama M, Matsuo N, Nordfors L, Hosoya T, et al. Relationship between the p-374T/A receptor of advanced glycation end products gene polymorphism and peritoneal solute transport status at the initiation of peritoneal dialysis. Ther Apher Dial. 2007;11:301–5.

    Article  CAS  PubMed  Google Scholar 

  13. Parikova A, Vlijm A, Brabcova I, de Graaff M, Struijk DG, Viklicky OJ, et al. Identification of gene transcripts implicated in peritoneal membrane alterations. Perit Dial Int. 2016;36:608–13.

    Article  CAS  Google Scholar 

  14. Parikova A, Hrubra P, Krejcik Z, Straneck V, Franekova J, Krediet RT, et al. Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Ren Physiol. 2020;318:F229–37.

    Article  CAS  Google Scholar 

  15. Fukiikujni N, Yamamoto H, Tanabe K, Naito Y, Sakamoto N, Tanaka Y, et al. Hypoxia-mediated CD24 expression is correlated with gastric cancer aggressiveness by promoting cell migration and invasion. Cancer Sci. 2014;105:1411–20.

    Article  CAS  Google Scholar 

  16. Van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT. Pyruvate-buffered dialysate fluids induce less peritoneal angiogenesis and fibrosis than conventional solutions. Perit Dial Int. 2008;28:487–96.

    Article  PubMed  Google Scholar 

  17. Dulany JT, Hatch FE. Peritoneal dialysis and loss of proteins: a review. Kidney Int. 1984;26:253–62.

    Article  Google Scholar 

  18. Sritippayawan S, Chiangjong W, Semangoen T, Aiasanon N, Jaetanawaitich P, Sinchaikul S, et al. Proteomic analysis of peritoneal dialysis fluid in patients with different types of peritoneal membranes. J Proteome Res. 2007;6:4356–436.

    Article  CAS  PubMed  Google Scholar 

  19. Raaijmakers R, Pluk W, Schroder CH, Gloerich J, Cornelissen EAM, Wessels HJCT, et al. Proteomic profiling and identification in peritoneal fluid of children treated by peritoneal dialysis. Nephrol Dial Transplant. 2008;23:2402–5.

    Article  CAS  PubMed  Google Scholar 

  20. Krediet RT, Zuijderhout FMJ, Boeschoten EW, Arisz L. Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron. 1986;42:133–40.

    Article  CAS  PubMed  Google Scholar 

  21. Kagan A, Bar-Khayim Y, Schafer Z, Fainaru M. Kinetics of peritoneal protein loss during CAPD: II. Lipoprotein leakage and its impact on plasma lipid levels. Kidney Int. 1990;37:980–90.

    Article  CAS  PubMed  Google Scholar 

  22. Wang HY, Tjan YF, Chien CC, Kan WC, Wu HY, Su SB, et al. Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transplant. 2010;25:1955–63.

    Article  CAS  PubMed  Google Scholar 

  23. Yang MH, Wang HY, Lu CY, Tsai WC, Lin PC, Su SB et al. Proteomic profiling for peritoneal dialysate: differential protein expression in diabetes mellitus. Biomed Res Int 2013; https://doi.org/10.1155/20113/64964.

  24. Wen Q, Zhang L, Mao HP, Tang XQ, Rong R, Fan JJ, et al. Proteomic analysis in peritoneal dialysis patients with different transport characteristics. Biochem Biophys Res Commun. 2013;438:473–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zavvos V, Buxton AT, Evans C, Lambie M, Davies SJ, Topley N, et al. A prospective proteomics study identified potential biomarkers of encapsulating peritoneal sclerosis in peritoneal effluent. Kidney Int. 2017;92:988–1002.

    Article  CAS  PubMed  Google Scholar 

  26. Buis B, Koomen GCM, Imholz ALT, Struijk DG, Reddingius RE, Arisz L, et al. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Mephrol Dial Transplant. 1996;11:1113–20.

    Article  CAS  Google Scholar 

  27. Krediet RT, Sampimon DE, Vlijm A, Coester AM, Struijk DG, Smit W. Biological markers in the peritoneal dialysate effluent: are they useful? Contrib Nepohrol. 2009;163:54–9.

    Article  CAS  Google Scholar 

  28. Lopes Barreto D, Krediet RT. Current status and practical use of effluent biomarkers in peritoneal dialysis patients. Am J Kidney Dis. 2013;62:823–33.

    Article  PubMed  Google Scholar 

  29. Kabawat SE, Bast RC, Bhan AK, Welch WR, Knapp RC, Colvin RB. Tissue distribution of a coelomic -epithelium-related antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol. 1983;2:275–85.

    Article  CAS  PubMed  Google Scholar 

  30. Koomen GCM, Betjes MGH, Zemel D, Krediet RT, Hoek FJ. Cancer antigen 125 is locally produced in the peritoneal cavity during continuous ambulatory peritoneal dialysis. Perit Dial Int. 1994;14:132–6.

    Article  CAS  PubMed  Google Scholar 

  31. Visser CE, Brouwer-Steenbergen JJE, Betjes MGH, Koomen GCM, Beelen RHJ, Krediet RT. Cancer antigen 125: a bulk marker fort he mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant. 1995;10:64–9.

    CAS  PubMed  Google Scholar 

  32. Sanussi AA, Zweers MM, Weening JJ, de Waart DR, Struijk DG, Krediet RT. Expression of cancer antigen 125 by peritoneal mesothelial cells is not influenced by the duration of peritoneal dialysis. Perit Dial Int. 2001;21:495–500.

    Article  Google Scholar 

  33. Pannekeet MM, Zemel D, Koomen GCM, Struijk DG, Krediet RT. Dialysate markers of peritoneal tissue during peritonitis and in stable CAPD. Perit Dial Int. 1995;15:217–25.

    Article  CAS  PubMed  Google Scholar 

  34. Lopes Barreto D, Coester AM, Noordzij M, Smit W, Struijk DG, Rogers S, et al. variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients. Nephrol Dial Transplant. 2011;26:3739–44.

    Article  CAS  PubMed  Google Scholar 

  35. Rodrigues A, Martins M, Santos MJ, Fonseca I, Oliveira JC, Cabrita A, et al. Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6:relationship with peritoneal transport. Adv Perit Dial. 2004;20:8–12.

    CAS  PubMed  Google Scholar 

  36. Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol. 2007;27:84–91.

    Article  CAS  PubMed  Google Scholar 

  37. Coester AM, Hutten H, Zweers MM, de Waart DR, Krediet RT. The relationship between effluent potassium due to cellular release, free water transport and CA 125 in peritoneal dialysis patients. NDT Plus. 2008;1:1v41–5.

    Google Scholar 

  38. Pannekeet MM, Koomen GCM, Struijk DG, Krediet RT. Dialysate CA 125 in stable CAPD patients: no relation with transport parameters. Clin Nephrol. 1995;44:248–54.

    CAS  PubMed  Google Scholar 

  39. Rippe B, Simonsen O, Heimburger O, Christenssin A, Haraldsson B, Stelin G, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59:348–57.

    Article  CAS  PubMed  Google Scholar 

  40. Jones S, Holmes C, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen and decreases hyaluronic acid levels. Kidney Int. 2001;59:1529–38.

    Article  CAS  PubMed  Google Scholar 

  41. Williams JD, Topley N, Craig KL, Mackenzie R, Pischetrieder M, Lage C, et al. The Euro-balance trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004;66:408–18.

    Article  PubMed  Google Scholar 

  42. Le Poole CY, Welten ASA, ter Wee PM, Pauw NJ, Djorai AN, Valentijn RM, et al. A peritoneal dialysis rgimen low in glucose and glucose degradation products results in increased cancer antigen 125 and peritoneal activation. Perit Dial Int. 2012;32:305–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cheema H, Bargman JM. Cancer antigen 125 as a biomarker in peritoneal dialysis; mesothelial cell health or death? Perit Dial Int. 2013;33:349–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krediet RT, Bargman JM. Cancer antigen 125 as a biomarker in peritoneal dialysis: mesothelial cell death or health? Perit Dial Int. 2013:715–9.

    Google Scholar 

  45. Vlahu CA, Aten J, de Graaff M, van Veen H, Everts V, de Waart DR, et al. New insights in effects of chronic kidney failure and dialysate exposure on the peritoneum. Perit Dial Int. 2016;36:614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aroeira LS, Aquillera A, Selgas R, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A, et al. mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 2005;46:938–48.

    Article  CAS  PubMed  Google Scholar 

  47. van Esch S, Zweers MM, Jansen MAM, de Waart DR, van Maanen JG, Krediet RT. Determinants of peritoneal solute transport rates in newly started non-diabetic peritoneal dialysis patients. Perit Dial Int. 2004;24:554–61.

    Article  PubMed  Google Scholar 

  48. Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int. 2005;68:1849–56.

    Article  PubMed  Google Scholar 

  49. Coester AM, Smit W, Struijk DG, Parikova A, Krediet RT. Longitudinal analysis of fluid transport and their determinants in PD patients. Perit Dial Int. 2014;34:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA 125 in peritoneal effluent. Kidney Int. 1997;51:888–93.

    Article  Google Scholar 

  51. van Esch S, Struijk DG, Krediet RT. The natural time-course of membrane alterations during peritoneal dialysis is partly altered by peritonitis. Perit Dial Int. 2016;36:448–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sampimon DE, Korte MP, Lopes Barreto D, Vlijm A, de Waart DR, Struijk DG, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int. 2010;30:163–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lopes Barreto D, Sampimon DE, Struijk DG, Krediet RT. Early detection of imminent encapsulating peritoneal sclerosos. Free water transport, selected effluent proteins or both. Perit Dial Int. 2019;39:83–9.

    Article  Google Scholar 

  54. Lopes Barreto D, Hoekstra T, Halbesma N, Leegte M, Boeschoten EW, Dekker FW, et al. The association of effluent CA 125 with peritoneal dialysis technique failure. Perit Dial Int. 2015;35:683–90.

    Article  CAS  Google Scholar 

  55. Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimburger O. Systemic and interaperitoneal interleukin-6 system during the first years of peritoneal dialysis. Perit Dial Int. 2006;26:53–63.

    Article  CAS  PubMed  Google Scholar 

  56. Pecoits-Filho R, Lindholm B, Axelsson J, Stenvinkel P. Update on interleukin-6 and its role in chronic renal failure. Nephrol Dial Transplant. 2003;18:1042–5.

    Article  CAS  PubMed  Google Scholar 

  57. Zemel D, ten Berge RJM, Koomen GCM, Struijk DG, Krediet RT. Serum interleukin-6 in ambulatory peritoneal dialysis patients. Nephron. 1993;64:320–1.

    Article  CAS  PubMed  Google Scholar 

  58. Pecoits–Filho R, Heimburger O, Barany P, Sulliman R, Fehrman-Ekholm I, Lindholm B, et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis. 2003;41:1212–8.

    Article  PubMed  Google Scholar 

  59. Oh KH, Moon JU, Oh J, Kim SG, Hwang YH, Kim S, et al. Baseline peritoneal solute transport rate is not associated with markers of sysytemic inflammation or comorbidity in incident Korean peritoneal dialysis patients. Nephrol Dial Transplant. 2008;23:2356–64.

    Article  CAS  PubMed  Google Scholar 

  60. Lambie M, Chess J, Donovan K, Kim YL, Do JY, Lee HB, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kishimoto T. The biology of interleukin-6. Blood. 1989;74:1–10.

    Article  CAS  PubMed  Google Scholar 

  62. Pecoits-Filho R, Regina M, Araujo T, Lindholm B, Stenvinkel P, Abensur H, et al. Plasma and dialysates Il-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant. 2002;17:1480–6.

    Article  CAS  PubMed  Google Scholar 

  63. Yu Z, Lambie M, Chess J, Williams A, Do JY, Topley N, et al. Peritoneal protein clearance is a function of local inflammation and membrane area whereas systemic inflammation and comorbidity predict survival of incident peritoneal dialysis patients. Front Physiol. 2019;10:105.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, et al. Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol. 2014;15:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lambie M, Chess J, Summers A, Williams PF, Topley N, Davies SJ, et al. Peritoneal inflammation precedes encapsulating peritoneal sclerosis: results from the global fluid study. Nephrol Dial Transplant. 2016;31:480–6.

    Article  CAS  PubMed  Google Scholar 

  66. Garosi G, DiPaolo N, Sacchi G, Gaggiotti E. Sclerosing peritonitis: a nosological entity. Perit Dial Int. 2005;25(suppl 3):S110–2.

    Article  PubMed  Google Scholar 

  67. Betjes MGH, Habib M, Struijk DG, Lopes Barreto D, Korte M, Abrahams AC, et al. Encapsulating peritoneal sclerosis is associated with T-cell activation. Nephrol Dial Transplant. 2015;30:11568–76.

    Article  CAS  Google Scholar 

  68. Lijnen HR. Pleitropic functions of plasminogen activator-1. J Thromb Haemost. 2005;3:35–45.

    Article  CAS  PubMed  Google Scholar 

  69. Uchiyama T, Kurabayshi M, Ohyama Y, Utsugi T, Akuzawa N, Sati M, et al. Hypoxia induces transcription of the plasminogen activator-1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:1155–61.

    Article  CAS  PubMed  Google Scholar 

  70. Rerolle JP, Hertig A, Nguyen G, Saer JD, Rondeau EP. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int. 2000;58:1841–50.

    Article  CAS  PubMed  Google Scholar 

  71. Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei. Plasminogen activatot inhibitor type-1 as a regulator of fibrosis. J Cell Biochem. 2018;119:17–27.

    Article  CAS  PubMed  Google Scholar 

  72. Rougier JP, Gua S, Hagege J, Nguyen N, Ronco PM. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-β1. Kidney Int. 1998;54:87–98.

    Article  CAS  PubMed  Google Scholar 

  73. Mandl-Weber S, Haslinger B, Sitter T. Thrombin upregulates production of plasminogen activator inhibitor type 1 in human peritoneal mesothelial cells. Perit Dial Int. 1999;19:319–24.

    Article  CAS  PubMed  Google Scholar 

  74. Katsutani M, Ito T, Kohno N, Yorioka N. Glucose-based PD solution, but not icodextrin-based PD solution, induces plasminogen activator inhibitor-1 and tissue-type plasminogen activator in human peritoneal mesothelial cells via ERK1/2. Ther Apher Dial. 2007;11:94–100.

    Article  CAS  PubMed  Google Scholar 

  75. Mandl-Weber S, Haslinger B, Schalkwijk CG, Sitter T. Early glycated albumin, but not advanced glycated albumin, methylglyoxal, or 3-deoxyglucosone increases the expression of PAI-1 in human peritoneal mesothelial cells. Perit Dial Int. 2001;21:487–94.

    Article  CAS  PubMed  Google Scholar 

  76. Goedde M, Sitter T, Schiffl H, Bechtel U, Schramm W, Spannagl M. Coagulation and fibrinolysis-related antigens in plasma and dialysate of CAPD patients. Perit Dial Int. 1997;17:162–6.

    Article  CAS  PubMed  Google Scholar 

  77. Lopes Barreto D, Coester AM, Struijk DG, Krediet RT. Can effluent matrix metalloproteinase-2 and plasminogen activator inhibitor-1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit Dial Int. 2013;33:529–37.

    Article  Google Scholar 

  78. Boer AW, Levi M, Reddingius RE, Willems HL, van den Bosch S, Schroeder CH, et al. Intraperitoneal hypercoagulation and hypofibrinolysis is present in childhood peritonitis. Pediatr Nephrol. 1999;13:284–7.

    Article  PubMed  Google Scholar 

  79. Lopes Barreto D, Struijk DG, Krediet RT. Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis. 2015;65:748–75.

    Article  CAS  PubMed  Google Scholar 

  80. Slingeneyer A, Canoud B, Mion C. Permanent loss of ultrafiltration capacity of the peruitoneum in long=term peritoneal dialysis: an epidemiological study. Nephron. 1983;33:133–8.

    Article  CAS  PubMed  Google Scholar 

  81. Faller B, AMarichal JF. Loss of ultrafiltration in continuous ambulatory peritoneal dialysis: a role for acetate. Perit Dial Bull. 1984;4:10–3.

    Article  Google Scholar 

  82. Krediet RT, Boeschoten EW, Zuyderhoudt AL. Peritoneal transport characteristics of water, low-molecular weight solutes and proteins during long-term continuous ambulatory peritoneal dialysis. Perit Dial Bull. 1986;6:61–5.

    Article  Google Scholar 

  83. Ota K, Mineshima M, Watanabe N, Naganuma S. Functional deterioration of the peritoneum: does it occur in the absence of peritonitis? Nephrol Dial Transplant. 1987;2:30–3.

    CAS  PubMed  Google Scholar 

  84. Selgas R, Fernandez-Reyes MJ, Bosque E, Bajo MA, Borrego F, Jimenez C, et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis. 1994;23:64–73.

    Article  CAS  PubMed  Google Scholar 

  85. Krediet RT, Zemel D, Imholz ALT, Koomen GCM, Struijk DG, Arisz L. Indices of peritoneal permeability and surface area. Perit Dial Int. 1993;33(suppl 2):S31–4.

    Article  Google Scholar 

  86. Imai H, Satoh K, Ohtani H, Hamai K, Haseyama T, Komatsuda A, et al. Clinical application of the peritoneal dialysis capacity (PDC) test: serial analysis of peritoneal function in CAPD patients. Kidney Int. 1998;54:546–53.

    Article  CAS  PubMed  Google Scholar 

  87. Davies SJ, Phillips L, Russel GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant. 1998;13:962–8.

    Article  CAS  PubMed  Google Scholar 

  88. Davies SJ, Brown B, Bryan J, Russel GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant. 1993;8:64–70.

    Article  CAS  PubMed  Google Scholar 

  89. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004;66:2437–45.

    Article  CAS  PubMed  Google Scholar 

  90. Lambie ML, John B, Mushahar L, Huckvale C, Davies SJ. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int. 2010;78:611–8.

    Article  PubMed  Google Scholar 

  91. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. application of two-pore formalism. Kidney Int. 1989;35:1234–44.

    Article  CAS  PubMed  Google Scholar 

  92. Rippe B, Venturoli D. Simulations of osmotic ultrafiltration failure in CAPD using a three-pore membrane/fiber matrix model. Am J Physiol Ren Physiol. 2007;292:F1035–43.

    Article  CAS  Google Scholar 

  93. Smit W, Struijk DG, Ho-dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int. 2004;66:849–54.

    Article  PubMed  Google Scholar 

  94. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 1991;40:315–25.

    Article  CAS  PubMed  Google Scholar 

  95. Krediet RT. Ultrafiltration failure is a reflection of peritoneal alterations in patients treated with peritoneal dialysis. Front Physiol. 2018;9:1815.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Parikova A, Smit W, Zweers MM, Struijk DG, Krediet RT. Free water transport, small pore transport and the osmotic gradient. Nephrol Dial Transplant. 2008;23:2350–5.

    Article  CAS  PubMed  Google Scholar 

  97. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous mbulatory peritoneal dialysis patients. Eur J Clin Investig. 1987;17:43–52.

    Article  CAS  Google Scholar 

  98. Devuyst O, Margetts P, Topley N. Tpathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.

    Article  CAS  PubMed  Google Scholar 

  99. Zemel D, Koomen GCM, Hart AAM, ten Berge RJM, Struijk DG, Krediet RT. Relationship of TNFα, interleukin-6 and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med. 1993;122:686–96.

    CAS  PubMed  Google Scholar 

  100. Brimble KS, Walker M, Margetts PJ, Kundal JKK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol. 2006;17:2591–8.

    Article  PubMed  Google Scholar 

  101. Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol. 2006;17:271–8.

    Article  PubMed  Google Scholar 

  102. Mehrotra R, Ravel V, Streja E, Kuttykrihan S, Adams SV, Katz R, et al. peritoneal equilibration test and patient outcomes. Clin J Am Soc Nephrol. 2015;8:1990–2001.

    Article  CAS  Google Scholar 

  103. Trabinor M, Lambie M, Davies SJ. Salt and wateer balance. In: Molont DA, Craig JC, editors. Evidence-based nephrology. 2nd ed. Oxford: Wiley- Blackwell. in press.

    Google Scholar 

  104. Asghar RB, Davies SJ. Pathways of fluid transport and reabsorption across the peritoneal membrane. Kidney Int. 2008;73:1048–53.

    Article  CAS  PubMed  Google Scholar 

  105. Johnson DW, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ, et al. Superior survival of high transporters treated with automated versus continupus ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2010;25:1973–9.

    Article  PubMed  Google Scholar 

  106. Mistry CD, Gokal R, Peers EM for the MIDAS Study Group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose concentrations. Kidney Int. 1994;46:497–503.

    Article  Google Scholar 

  107. Ho-dac-Pannekeet MM, Schouten N, Langedijk MJ, Hiralall JK, de Waart DR, Struijk DG, et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 1996;50:979–86.

    Article  CAS  PubMed  Google Scholar 

  108. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, et al. Superioroty of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005;16:546–54.

    Article  CAS  PubMed  Google Scholar 

  109. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson C, et al. Icodextrin improves the fluid status of peritoneal dialysis patients; results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14:2338–44.

    Article  CAS  PubMed  Google Scholar 

  110. Goossen K, Becker M, Marshall MR, Buhn S, Breuning J, Firanek CA, et al. Icodextrin versus glucose solutions for the once-daily long dwell in peritoneal dialysis: an enriched systematic review and meta-analysis of randomized controllked trials. Am J Kidney Dis. 2020;75:830–46.

    Article  CAS  PubMed  Google Scholar 

  111. Davies SJ, Bryan J, Philips L, Russel GI. Longitudinal changes in peritoneal kinetics; the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant. 1996;11:498–506.

    Article  CAS  PubMed  Google Scholar 

  112. van Diepen ATN, van Esch S, Struijk DG, Krediet RT. The first peritonitis episode alters the natural course of peritoneal transport in peritoneal dialysis patients. Perit Dial Int. 2015;35:324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MWY, et al. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function. Nephrol Dial Transplant. 2012;27:4445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elphick EH, Teece L, Chess JA, Do JY, Kim YL, Lee HB, et al. Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol. 2018;13:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Heaf JG, Sarac S, Afzal S. A high peritoneal large pore fluid flux causes hypoalbuminemia and is a risk factor for death in peritoneal dialysis patients. Nephrol Dial Transplant. 2005;20:2194–201.

    Article  CAS  PubMed  Google Scholar 

  116. Perl J, Huckvale K, Chellar M, John B, Davies SJ. Peritoneal protein clearance and not peritoneal membrane transport status predicts survival in a contemporary cohort of peritoneal dialysis patients. Clin J Am Soc Nephrol. 2009;4:1201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pérez-Fontán M, Rodríguez-Carmona A, Barreda D, López Muñiz A, Blanco Castro N, García Falcón T. Peritoneal protein transport during the baseline peritoneal equilibration test is an accurate predictor of the outcome of peritoneal dialysis patients. Nephron Clin Pract. 2010;116:c104–13.

    Article  PubMed  Google Scholar 

  118. Rajakaruna G, Caplin B, Davenport A. Peritoneal protein clearance rather than faster transport status determines outcomes in peritoneal dialysis patients. Perit Dial Int. 2015;35:216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu W, Pang WF, Jin L, Li H, Chow KM, Kwan BC, et al. Peritoneal protein clearance predicts mortality in peritoneal dialysis patients. Clin Exp Nephrol. 2019;23:551–60.

    Article  CAS  PubMed  Google Scholar 

  120. Elsurer R, Afsar B, Sezer S, Ozdemir FN, Haberal M. Peritoneal albumin leakage: 2-year prospective cardiovascular event occurrence and patient survival analysis. Nephrology (Carlton). 2009;14:712–5.

    Article  CAS  Google Scholar 

  121. Balafa O, Halbesma N, Struijk DG, Dekker FW, Krediet RT. Peritoneal.albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2011;6:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chang TI, Kang EW, Lee YK, Shin SK. Higher peritoneal protein clearance as a risk factor for cardiovascular disease in peritoneal dialysis patient. PLoS One. 2013;8:e56223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sanchez-Villanueva R, Bajo A, del Peso G, Fernandez-Reyes GE, Romero S, et al. Higher daily peritoneal protein clearance when initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible new marker of systemic endothelial dysfunction? Nephrol Dial Transplant. 2009;24:1009–14.

    Article  CAS  PubMed  Google Scholar 

  124. Krediet RT, Yoowannakul S, Harris L, Davenport A. Relationships between peritoneal protein clearance and parameters of fluid status agree with clinical observations in other diseases that venous congestion increases microvascular escape. Perit Dial Int. 2019;19:155–62.

    Article  Google Scholar 

  125. Krediet RT, Balafa O. Cardiovascular riskin the peritoneal dialysis patient. Nat Rev Nephrol. 2010;6:451–60.

    Article  PubMed  Google Scholar 

  126. Tabinor M, Elphinck E, Dudson M, Kwok CS, Lambie M, Davies SJ. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep. 2018;8:4441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Effect of dialysate osmolarity on the transport of low-molecular weight solutes and proteins during CAPD. Kidney Int. 1993;43:1339–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Krediet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davies, S.J., Krediet, R.T. (2021). Long-Term Peritoneal Dialysis. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics