Skip to main content

New Peritoneal Dialysis Solutions and Solutions on the Horizon

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis
  • 57 Accesses

Abstract

The following will be discussed in this chapter: (1) effects of alterations in electrolytes, (2) amino acids, (3) icodextrin, (4) neutral pH, low/ultralow glucose degradation product “biocompatible” PD solutions, and (5) bicarbonate- and/or lactate-buffered solutions. Both high and low dialysate magnesium concentrations can have unwanted side effects, but a concentration of 0.5 mmol/L will probably be adequate for most patients. A calcium concentration of 1.25 mmol/L has less side effects than 1.75 mmol/L, but close monitoring of the development of hyperthyroidism is required. Low dialysate sodium concentrations enhance sodium removal from the body and lowers blood pressure, but such solutions are not commercially available. Nutritional effects of a 1.1% amino acid-based solution are limited, but one exchange per day can be used to reduce peritoneal glucose exposure. Icodextrin 7.5% for the long exchange provides sustained ultrafiltration and provides more ultrafiltration than 3.86%/4.25% glucose dialysate. However, its use is limited to one daily exchange to prevent excessive maltose accumulation. Combinations with low molecular osmotic agents are interesting, but not commercially available. Biocompatible dialysis solutions are characterized by a neutral pH and reduced concentrations of glucose degradation products, such as aldehydes and dicarbonyl compounds. Their use is associated with better preservation of residual renal function and less inflow pain. Their use leads to better peritoneal histology and possibly to better preservation of peritoneal transport function. It is unclear if the composition of the buffer is important.

This chapter is a modification and update of chapter 11 by M. Feriani and R.T. Krediet, published in the 3rd edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Parker A, Nolph KD. Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs. 1980;26:194–6.

    CAS  PubMed  Google Scholar 

  2. Randall RE Jr, Cohen MD, Spray CC Jr, Rossmeisl EC. Hypermagnesemia in renal failure. Etiology and toxic manifestations. Ann Intern Med. 1964;61:73–88.

    Article  CAS  PubMed  Google Scholar 

  3. Navarro-Gonzalez JF. Magnesium in dialysis patients: serum levels and clinical implications. Clin Nephrol. 1998;49(6):373–8.

    CAS  PubMed  Google Scholar 

  4. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987;32(3):388–94.

    Article  CAS  PubMed  Google Scholar 

  5. Lindholm B, Alvestrand A, Hultman E, Bergstrom J. Muscle water and electrolytes in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand. 1986;219(3):323–30.

    Article  CAS  PubMed  Google Scholar 

  6. Massry SG, Coburn JW, Kleeman CR. Evidence for suppression of parathyroid gland activity by hypermagnesemia. J Clin Invest. 1970;49(9):1619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Navarro JF, Mora C, Macia M, Garcia J. Serum magnesium concentration is an independent predictor of parathyroid hormone levels in peritoneal dialysis patients. Perit Dial Int. 1999;19(5):455–61.

    Article  CAS  PubMed  Google Scholar 

  8. Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Low-calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant. 1992;7(12):1219–25.

    Article  CAS  PubMed  Google Scholar 

  9. Rippe B, Venturoli D. Optimum electrolyte composition of a dialysis solution. Perit Dial Int. 2008;28(Suppl 3):S131–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ejaz AA, McShane AP, Gandhi VC, Leehey DJ, Ing TS. Hypomagnesemia in continuous ambulatory peritoneal dialysis patients dialyzed with a low-magnesium peritoneal dialysis solution. Perit Dial Int. 1995;15(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  11. Saha HH, Harmoinen AP, Pasternack AI. Measurement of serum ionized magnesium in CAPD patients. Perit Dial Int. 1997;17(4):347–52.

    Article  CAS  PubMed  Google Scholar 

  12. Seelig MS. Electrographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann N Y Acad Sci. 1969;162(2):906–17.

    Article  CAS  PubMed  Google Scholar 

  13. Moulin SR, Mill JG, Rosa WC, Hermisdorf SR, Caldeira Lda C, Zago-Gomes EM. QT interval prolongation associated with low magnesium in chronic alcoholics. Drug Alcohol Depend. 2015;155:195–201.

    Article  CAS  PubMed  Google Scholar 

  14. Snitker S, Doerfler RM, Soliman EZ, Deo R, St Peter WL, Kramlik S, et al. Association of QT-prolonging medication use in CKD with electrocardiographic manifestations. Clin J Am Soc Nephrol. 2017;12(9):1409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molnar AO, Biyani M, Hammond I, Harmon JP, Lavoie S, McCormick B, et al. Lower serum magnesium is associated with vascular calcification in peritoneal dialysis patients: a cross sectional study. BMC Nephrol. 2017;18(1):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carmichael AJ, Dickinson F, McHugh MI, Martin AM, Farrow M. Magnesium free dialysis for uraemic pruritus. BMJ. 1988;297(6663):1584–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Soohoo M, Streja E, Rivara MB, Obi Y, Adams SV, et al. Serum magnesium levels and hospitalization and mortality in incident peritoneal dialysis patients: a cohort study. Am J Kidney Dis. 2016;68(4):619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huchison AJ. Serum magnesium and end-stage renal disease. Perit Dial Int. 1979;17:327–9.

    Article  Google Scholar 

  19. Simonsen O, Venturoli D, Wieslander A, Carlsson O, Rippe B. Mass transfer of calcium across the peritoneum at three different peritoneal dialysis fluid Ca2+ and glucose concentrations. Kidney Int. 2003;64(1):208–15.

    Article  CAS  PubMed  Google Scholar 

  20. Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21(6):862–7.

    Article  CAS  PubMed  Google Scholar 

  21. Weinreich T, Colombi A, Echterhoff HH, Mielke G, Nebel M, Ziegelmayer C, et al. Transperitoneal calcium mass transfer using dialysate with a low calcium concentration (1.0 mM). Perit Dial Int. 1993;13(Suppl 2):S467–70.

    Article  PubMed  Google Scholar 

  22. Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21(6):849–61.

    Article  CAS  PubMed  Google Scholar 

  23. Kurz P, Roth P, Werner E, Vlachojannis J, Grutzmacher P. Factors influencing transperitoneal calcium balance during CAPD. ASAIO J. 1992;38(3):M589–92.

    Article  CAS  PubMed  Google Scholar 

  24. Davenport A, Goel S, MacKenzie JC. Audit of the use of calcium carbonate as a phosphate binder in 100 patients treated with continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1992;7(7):632–5.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson DW, Rigby RJ, McIntyre HD, Brown A, Freeman J. A randomized trial comparing 1.25 mmol/l calcium dialysate to 1.75 mmol/l calcium dialysate in CAPD patients. Nephrol Dial Transplant. 1996;11(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  26. Weinreich T, Passlick-Deetjen J, Ritz E. Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. The Peritoneal Dialysis Multicenter Study Group. Am J Kidney Dis. 1995;25(3):452–60.

    Article  CAS  PubMed  Google Scholar 

  27. Weinreich T, Ritz E, Passlick-Deetjen J. Long-term dialysis with low-calcium solution (1.0 mmol/L) in CAPD: effects on bone mineral metabolism. Collaborators of the Multicenter Study Group. Perit Dial Int. 1996;16(3):260–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez C, Lopez-Barea F, Sanchez-Cabezudo J, Bajo A, Mate A, Martinez E, et al. Low vs standard calcium dialysate in peritoneal dialysis: differences in treatment, biochemistry and bone histomorphometry. A randomized multicentre study. Nephrol Dial Transplant. 2004;19(6):1587–93.

    Article  CAS  PubMed  Google Scholar 

  29. Haris A, Sherrard DJ, Hercz G. Reversal of adynamic bone disease by lowering of dialysate calcium. Kidney Int. 2006;70(5):931–7.

    Article  CAS  PubMed  Google Scholar 

  30. Liang J, Wang Z, Liu G, Zhan J, Jiang L, Jiang Z. Association of dialysate calcium concentration with fetuin A level and carotid intima-media thickness in peritoneal dialysis patients. Ren Fail. 2014;36(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tuncer M, Ermis C, Suleymanlar G, Yakupoglu G, Ersoy FF. Low calcium dialysate increases cardiac relaxation in CAPD patients. Perit Dial Int. 2002;22(6):714–8.

    Article  PubMed  Google Scholar 

  32. Wang T, Waniewski J, Heimburger O, Werynski A, Lindholm B. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int. 1997;52(6):1609–16.

    Article  CAS  PubMed  Google Scholar 

  33. Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int. 2000;20(Suppl 4):S22–42.

    Article  PubMed  Google Scholar 

  34. Krediet RT. Dry body weight: water and sodium removal targets in PD. Contrib Nephrol. 2006;150:104–10.

    Article  PubMed  Google Scholar 

  35. Amici G, Virga G, Da Rin G, Teodori T, Calzavara P, Bocci C. Low sodium concentration solution in normohydrated CAPD patients. Adv Perit Dial. 1995;11:78–82.

    CAS  PubMed  Google Scholar 

  36. Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int. 1992;41(5):1320–32.

    Article  CAS  PubMed  Google Scholar 

  37. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int. 1994;46(2):333–40.

    Article  CAS  PubMed  Google Scholar 

  38. Leypoldt JK, Charney DI, Cheung AK, Naprestek CL, Akin BH, Shockley TR. Ultrafiltration and solute kinetics using low sodium peritoneal dialysate. Kidney Int. 1995;48(6):1959–66.

    Article  CAS  PubMed  Google Scholar 

  39. Nakayama M, Yokoyama K, Kubo H, Matsumoto H, Hasegawa T, Shigematsu T, et al. The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol. 1996;45(3):188–93.

    CAS  PubMed  Google Scholar 

  40. Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, et al. The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant. 2009;24(5):1609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rutkowski B, Tam P, van der Sande FM, Vychytil A, Schwenger V, Klein G, et al. Residual renal function and effect of low-sodium solution on blood pressure in peritoneal dialysis patients. Perit Dial Int. 2019;39(4):335–43.

    Article  PubMed  Google Scholar 

  42. Young GA, Kopple JD, Lindholm B, Vonesh EF, De Vecchi A, Scalamogna A, et al. Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study. Am J Kidney Dis. 1991;17(4):462–71.

    Article  CAS  PubMed  Google Scholar 

  43. Kopple JD, Blumenkrantz MJ, Jones MR, Moran JK, Coburn JW. Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr. 1982;36(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  44. Lindholm B, Bergstrom J. Nutritional aspects on peritoneal dialysis. Kidney Int Suppl. 1992;38:S165–71.

    CAS  PubMed  Google Scholar 

  45. Gjessing J. Addition of aminoacids to peritoneal-dialysis fluid. Lancet. 1968;2(7572):812.

    Article  CAS  PubMed  Google Scholar 

  46. Oreopoulos DG, Marliss E, Anderson AH. Nutritional aspects of CAPD and the potential use of amino acid containing dialysis solutions. Perit Dial Bull. 1983;3:10–5.

    Article  Google Scholar 

  47. Williams PF, Marliss E, Anderson G. Amino acid absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull. 1982;2:124–30.

    Article  Google Scholar 

  48. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron. 1986;42(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  49. Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Perit Dial Int. 1996;16(Suppl 1):S88–90.

    Article  PubMed  Google Scholar 

  50. Oren A, Wu G, Harvey Anderson G. Effective use of amino acid dialysate over four weeks in CAPD patients. Perit Dial Bull. 1983;3:66–73.

    Article  Google Scholar 

  51. Goodship TH, Lloyd S, McKenzie PW, Earnshaw M, Smeaton I, Bartlett K, et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci (London, England: 1979). 1987;73(5):471–8.

    Article  CAS  Google Scholar 

  52. Lindholm B, Werynski A, Bergstrom J. Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs. 1988;12(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  53. Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol. 1996;45(5):295–302.

    PubMed  Google Scholar 

  54. Pedersen FB. Alternate use of amino acid and glucose solutions in CAPD. A review. Contrib Nephrol. 1991;89:147–54.

    Article  CAS  PubMed  Google Scholar 

  55. Dombros NV, Prutis K, Tong M, Anderson GH, Harrison J, Sombolos K, et al. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients – no effect on nutritional status. Perit Dial Int. 1990;10(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  56. Lindholm B, Bergstrom J. Amino acids in CAPD solutions: lights and shadows. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal dialysis. Wichtig editore; 1991. p. 139–43.

    Google Scholar 

  57. Jones MR, Martis L, Algrim CE, Bernard D, Swartz R, Messana J, et al. Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab. 1992;18(2–5):309–15.

    CAS  PubMed  Google Scholar 

  58. Kopple JD, Bernard D, Messana J, Swartz R, Bergstrom J, Lindholm B, et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int. 1995;47(4):1148–57.

    Article  CAS  PubMed  Google Scholar 

  59. Faller B, Aparicio M, Faict D, De Vos C, de Precigout V, Larroumet N, et al. Clinical evaluation of an optimized 1.1% amino-acid solution for peritoneal dialysis. Nephrol Dial Transplant. 1995;10(8):1432–7.

    CAS  PubMed  Google Scholar 

  60. Jones MR, Gehr TW, Burkart JM, et al. Replacement of amino acid and protein losses with 1.1% amino acid peritoneal dialysis solution. Perit Dial Int. 1998;18:210–6.

    Article  CAS  PubMed  Google Scholar 

  61. Garibotto G, Sofia A, Canepa A, Saffioti S, Sacco P, Sala M, et al. Acute effects of peritoneal dialysis with dialysates containing dextrose or dextrose and amino acids on muscle protein turnover in patients with chronic renal failure. J Am Soc Nephrol. 2001;12(3):557–67.

    Article  CAS  PubMed  Google Scholar 

  62. Tjiong HL, van den Berg JW, Wattimena JL, Rietveld T, van Dijk LJ, van der Wiel AM, et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol. 2005;16(5):1486–93.

    Article  CAS  PubMed  Google Scholar 

  63. Tjiong HL, Rietveld T, Wattimena JL, van den Berg JW, Kahriman D, van der Steen J, et al. Peritoneal dialysis with solutions containing amino acids plus glucose promotes protein synthesis during oral feeding. Clin J Am Soc Nephrol. 2007;2(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  64. Grzegorzewska AE, Mariak I, Dobrowolska-Zachwieja A, Szajdak L. Effects of amino acid dialysis solution on the nutrition of continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1999;19(5):462–70.

    Article  CAS  PubMed  Google Scholar 

  65. Misra M, Reaveley DA, Ashworth J, Muller B, Seed M, Brown EA. Six-month prospective cross-over study to determine the effects of 1.1% amino acid dialysate on lipid metabolism in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 1997;17(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  66. Li FK, Chan LY, Woo JC, Ho SK, Lo WK, Lai KN, et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis. 2003;42(1):173–83.

    Article  CAS  PubMed  Google Scholar 

  67. Park MS, Choi SR, Song YS, Yoon SY, Lee SY, Han DS. New insight of amino acid-based dialysis solutions. Kidney Int Suppl. 2006;103:S110–4.

    Article  CAS  Google Scholar 

  68. Alsop RM. History, clinical and pharmaceutical development of icodextrin. Perit Dial Int. 1994;14:S5–S12.

    Article  Google Scholar 

  69. Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet. 1987;2(8552):178–82.

    Article  CAS  PubMed  Google Scholar 

  70. Mistry CD, Gokal R. Can ultrafiltration occur with a hypo-osmolar solution in peritoneal dialysis?: the role for ‘colloid’ osmosis. Clin Sci (London, England: 1979). 1993;85(4):495–500.

    Article  CAS  Google Scholar 

  71. Ho-dac-Pannekeet MM, Schouten N, Langendijk MJ, Hiralall JK, de Waart DR, Struijk DG, et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 1996;50(3):979–86.

    Article  CAS  PubMed  Google Scholar 

  72. Douma CE, Hiralall JK, de Waart DR, Struijk DG, Krediet RT. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells [see comments]. Kidney Int. 1998;53:1014–21.

    Article  CAS  PubMed  Google Scholar 

  73. Mistry CD, O'Donoghue DJ, Nelson S, Gokal R, Ballardie FW. Kinetic and clinical studies of beta 2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transplant. 1990;5(7):513–9.

    Article  CAS  PubMed  Google Scholar 

  74. Imholz AL, Brown CB, Koomen GC, Arisz L, Krediet RT. The effect of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial. 1993;9:25–30.

    CAS  PubMed  Google Scholar 

  75. Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int. 2000;57(6):2546–56.

    Article  CAS  PubMed  Google Scholar 

  76. Gokal R, Mistry CD, Peers EM. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Perit Dial Int. 1995;15(6):226–30.

    Article  CAS  PubMed  Google Scholar 

  77. Posthuma N, ter Weel PM, Donker AJ, Peers EM, Oe PL, Verbrugh HA. Icodextrin use in CCPD patients during peritonitis: ultrafiltration and serum disaccharide concentrations. Nephrol Dial Transplant. 1998;13(9):2341–4.

    Article  CAS  PubMed  Google Scholar 

  78. Vonesh EF, Story KO, Douma CE, Krediet RT. Modeling of icodextrin in PD Adequest 2.0. Perit Dial Int. 2006;26(4):475–81.

    Article  CAS  PubMed  Google Scholar 

  79. Wang T, Heimburger O, Cheng HH, Bergstrom J, Lindholm B. Peritoneal fluid and solute transport with different polyglucose formulations. Perit Dial Int. 1998;18(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  80. Wang T, Cheng HH, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Effect of peritonitis on peritoneal transport characteristics: glucose solution versus polyglucose solution. Kidney Int. 2000;57(4):1704–12.

    Article  CAS  PubMed  Google Scholar 

  81. de Waart DR, Zweers MM, Struijk DG, Krediet RT. Icodextrin degradation products in spent dialysate of CAPD patients and the rat, and its relation with dialysate osmolality. Perit Dial Int. 2001;21(3):269–74.

    Article  PubMed  Google Scholar 

  82. Peers EM, Scrimgeour AC, Haycox AR. Cost-containment in CAPD patients with ultrafiltration failure. Clin Drug Invest. 1995;10(Supplement 1):53–8.

    Article  Google Scholar 

  83. Wilkie ME, Plant MJ, Edwards L, Brown CB. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int. 1997;17:84–7.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson D, Arndt M, O'shea A, Watt R, Hamilton J, Vincent K. Icodextrin as salvage therapy in peritoneal dialysis patients with refractory fluid overload. Nephrology. 2002;7(1):A10.

    Article  Google Scholar 

  85. Schalkwijk CG, ter Wee PM, Teerlink T. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Perit Dial Int. 2000;20(6):796–8.

    Article  CAS  PubMed  Google Scholar 

  86. Liberek T, Topley N, Mistry CD, Coles GA, Morgan T, Quirk RA, et al. Cell function and viability in glucose polymer peritoneal dialysis fluids. Perit Dial Int. 1993;13(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  87. Jorres A, Gahl GM, Topley N, Neubauer A, Ludat K, Muller C, et al. In-vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate-buffered and glucose-polymer-based solutions. Nephrol Dial Transplant. 1994;9:785–90.

    CAS  PubMed  Google Scholar 

  88. Thomas S, Schenk U, Fischer FP, Mettang T, Passlick-Deetjen J, Kuhlmann U. In vitro effects of glucose polymer-containing peritoneal dialysis fluids on phagocytic activity. Am J Kidney Dis. 1997;29(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  89. de Fijter CW, Verbrugh HA, Oe LP, Heezius E, Donker AJ, Verhoef J, et al. Biocompatibility of a glucose-polymer-containing peritoneal dialysis fluid. AmJ Kidney Dis. 1993;21(4):411–8.

    Article  Google Scholar 

  90. Bajo MA, Selgas R, Castro MA, del Peso G, Diaz C, Sanchez-Tomero JA, et al. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit Dial Int. 2000;20(6):742–7.

    Article  CAS  PubMed  Google Scholar 

  91. Krediet RT. Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit Dial Int. 2001;21(6):560–7.

    Article  CAS  PubMed  Google Scholar 

  92. Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int. 1997;51(3):888–93.

    Article  CAS  PubMed  Google Scholar 

  93. Posthuma N, Verburg HA, Donker AJM, van Dorp W, Dekker HAT, Peers EM, et al. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Perit Dial Int. 2000;20:174–80.

    Google Scholar 

  94. Mistry CD, Gokal R, Peers E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int. 1994;46(2):496–503.

    Article  CAS  PubMed  Google Scholar 

  95. Wolfson M, Piraino B, Hamburger RJ, Morton AR. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis. 2002;40(5):1055–65.

    Article  CAS  PubMed  Google Scholar 

  96. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005;16(2):546–54.

    Article  CAS  PubMed  Google Scholar 

  97. Posthuma N, ter Wee PM, Verbrugh HA, Oe PL, Peers E, Sayers J, et al. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrol Dial Transplant. 1997;12:550–3.

    Article  CAS  PubMed  Google Scholar 

  98. Plum J, Gentile S, Verger C, Brunkhorst R, Bahner U, Faller B, et al. Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis. 2002;39(4):862–71.

    Article  CAS  PubMed  Google Scholar 

  99. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14(9):2338–44.

    Article  CAS  PubMed  Google Scholar 

  100. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int. 2003;63(4):1556–63.

    Article  CAS  PubMed  Google Scholar 

  101. Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant. 2000;15:862–6.

    Article  CAS  PubMed  Google Scholar 

  102. Bredie SJ, Bosch FH, Demacker PN, Stalenhoef AF, van Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int. 2001;21(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  103. Delarue J, Maingourd C, Lamisse F, Garrigue MA, Bagros P, Couet C. Glucose oxidation after a peritoneal and an oral glucose load in dialyzed patients. Kidney Int. 1994;45(4):1147–52.

    Article  CAS  PubMed  Google Scholar 

  104. Adachi Y, Nakagawa Y, Nishio A. Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int. 2006;26(3):405–7.

    Article  CAS  PubMed  Google Scholar 

  105. Chang TI, Ryu DR, Yoo TH, Kim HJ, Kang EW, Kim H, et al. Effect of icodextrin solution on the preservation of residual renal function in peritoneal dialysis patients: a randomized controlled study. Medicine (Baltimore). 2016;95(13):e2991.

    Article  CAS  Google Scholar 

  106. Wens R, Taminne M, Devriendt J, Collart F, Broeders N, Mestrez F, et al. A previously undescribed side effect of icodextrin: overestimation of glycemia by glucose analyzer. Perit Dial Int. 1998;18(6):603–9.

    Article  CAS  PubMed  Google Scholar 

  107. Schoenicke G, Grabensee B, Plum J. Dialysis with icodextrin interferes with measurement of serum alpha-amylase activity. Nephrol Dial Transplant. 2002;17(11):1988–92.

    Article  CAS  PubMed  Google Scholar 

  108. Anderstam B, Garcia-Lopez E, Heimburger O, Lindholm B. Determination of alpha-amylase activity in serum and dialysate from patients using icodextrin-based peritoneal dialysis fluid. Perit Dial Int. 2003;23(2):146–50.

    Article  CAS  PubMed  Google Scholar 

  109. Garcia-Lopez E, Anderstam B, Heimburger O, Amici G, Werynski A, Lindholm B. Determ10ation of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients. Perit Dial Int. 2005;25(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  110. Wilkie ME, Brown CB. Polyglucose solutions in CAPD. Perit Dial Int. 1997;17(Suppl 2):S47–50.

    Article  PubMed  Google Scholar 

  111. Goldsmith D, Jayawardene S, Sabharwal N, Cooney K. Allergic reactions to the polymeric glucose-based peritoneal dialysis fluid icodextrin in patients with renal failure. Lancet. 2000;355(9207):897.

    Article  CAS  PubMed  Google Scholar 

  112. Queffeulou G, Lebrun-Vignes B, Wheatley P, Montagnac R, Mignon F. Allergy to icodextrin. Lancet. 2000;356(9223):75.

    Article  CAS  PubMed  Google Scholar 

  113. Divino Fiho JC. Allergic reactions to icodextrin in patients with renal failure. Lancet. 2000;355(9212):1364–5.

    CAS  PubMed  Google Scholar 

  114. Aanen MC, de Waart DR, Williams PF, Out TA, Zweers MM, Krediet RT. Dextran antibodies in peritoneal dialysis patients treated with icodextrin. Perit Dial Int. 2002;22(4):513–5.

    Article  PubMed  Google Scholar 

  115. Onuigbo MA. Unexplained hypotension and exertional dyspnea in a night-cycled peritoneal dialysis patient – a rare form of icodextrin hypersensitivity. Adv Perit Dial. 2014;30:87–9.

    PubMed  Google Scholar 

  116. Pinerolo MC, Porri MT, D'Amico G. Recurrent sterile peritonitis at onset of treatment with icodextrin solution. Perit Dial Int. 1999;19(5):491–2.

    Article  CAS  PubMed  Google Scholar 

  117. Williams PF, Foggensteiner L. Sterile/allergic peritonitis with icodextrin in CAPD patients. Perit Dial Int. 2002;22(1):89–90.

    Article  CAS  PubMed  Google Scholar 

  118. Tintillier M, Pochet JM, Christophe JL, Scheiff JM, Goffin E. Transient sterile chemical peritonitis with icodextrin: clinical presentation, prevalence, and literature review. Perit Dial Int. 2002;22(4):534–7.

    Article  PubMed  Google Scholar 

  119. Boer WH, Vos PF, Fieren MW. Culture-negative peritonitis associated with the use of icodextrin-containing dialysate in twelve patients treated with peritoneal dialysis. Perit Dial Int. 2003;23(1):33–8.

    Article  PubMed  Google Scholar 

  120. Poulopoulos V, Lam L, Cugelman A. Sterile peritonitis due to icodextrin: experience from a Canadian center. Perit Dial Int. 2004;24(1):88–9.

    Article  CAS  PubMed  Google Scholar 

  121. Toure F, Lavaud S, Mohajer M, Lavaud F, Canivet E, Nguyen P, et al. Icodextrin-induced peritonitis: study of five cases and comparison with bacterial peritonitis. Kidney Int. 2004;65(2):654–60.

    Article  CAS  PubMed  Google Scholar 

  122. Martis L, Patel M, Giertych J, Mongoven J, Taminne M, Perrier MA, et al. Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet. 2005;365(9459):588–94.

    Article  CAS  PubMed  Google Scholar 

  123. Parikova A, Zweers MM, Struijk DG, Krediet RT. Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv Perit Dial. 2003;19:186–90.

    PubMed  Google Scholar 

  124. Sav T, Oymak O, Inanc MT, Dogan A, Tokgoz B, Utas C. Effects of twice-daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 2009;29(4):443–9.

    Article  CAS  PubMed  Google Scholar 

  125. Gobin J, Fernando S, Santacroce S, Finkelstein FO. The utility of two daytime icodextrin exchanges to reduce dextrose exposure in automated peritoneal dialysis patients: a pilot study of nine patients. Blood Purif. 2008;26(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  126. Mistry CD, Gokal R. Single daily overnight (12-h dwell) use of 7.5% glucose polymer (Mw 18700; Mn 7300) +0.35% glucose solution: a 3-month study. Nephrol Dial Transplant. 1993;8(5):443–7.

    CAS  PubMed  Google Scholar 

  127. Jenkins SB, Wilkie ME. An exploratory study of a novel peritoneal combination dialysate (1.36% glucose/7.5% icodextrin), demonstrating improved ultrafiltration compared to either component studied alone. Perit Dial Int. 2003;23(5):475–80.

    Article  PubMed  Google Scholar 

  128. Dallas F, Jenkins SB, Wilkie ME. Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study. Perit Dial Int. 2004;24(6):542–6.

    Article  PubMed  Google Scholar 

  129. Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int. 2007;27(3):267–76.

    Article  CAS  PubMed  Google Scholar 

  130. Rodriguez-Carmona A, Perez Fontan M, Garcia Lopez E, Garcia Falcon T, Diaz CH. Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study. Perit Dial Int. 2007;27(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  131. Cho Y, Badve SV, Hawley CM, Wiggins K, Johnson DW. Biocompatible peritoneal dialysis fluids: clinical outcomes. Int J Nephrol. 2012;2012:812609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Chan TM, Yung S. Studying the effects of new peritoneal dialysis solutions on the peritoneum. Perit Dial Int. 2007;27(Suppl 2):S87–93.

    PubMed  Google Scholar 

  133. Szeto CC, Johnson DW. Low GDP solution and glucose-sparing strategies for peritoneal dialysis. Semin Nephrol. 2017;37(1):30–42.

    Article  CAS  PubMed  Google Scholar 

  134. Wieslander AP, Nordin MK, Kjellstrand PT, Boberg UC. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int. 1991;40(1):77–9.

    Article  CAS  PubMed  Google Scholar 

  135. Erixon M, Wieslander A, Linden T, Carlsson O, Forsback G, Svensson E, et al. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int. 2006;26(4):490–7.

    Article  CAS  PubMed  Google Scholar 

  136. Schambye HT. Effect of different buffers on the biocompatibility of CAPD solutions. Perit Dial Int. 1996;16(Suppl 1):S130–S6.

    Article  PubMed  Google Scholar 

  137. Jonasson P, Albrektsson A, Ljungman S, Wieslander A, Braide M. Peritoneal leukocyte survival and respiratory burst responses in patients treated with a low glucose degradation and high pH peritoneal dialysis fluid. Int J Artif Organs. 2003;26(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  138. Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H, et al. Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int. 2004;24(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  139. Wieslander AP, Nordin MK, Martinson E, Kjellstrand PT, Boberg UC. Heat sterilized PD-fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin Nephrol. 1993;39(6):343–8.

    CAS  PubMed  Google Scholar 

  140. Nataatmadja M, Cho Y, Johnson DW. Evidence for biocompatible peritoneal dialysis solutions. Contrib Nephrol. 2017;189:91–101.

    Article  PubMed  Google Scholar 

  141. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 2004;66(3):1257–65.

    Article  CAS  PubMed  Google Scholar 

  142. Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 2003;63(1):298–305.

    Article  CAS  PubMed  Google Scholar 

  143. Justo P, Sanz AB, Egido J, Ortiz A. 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes. 2005;54(8):2424–9.

    Article  CAS  PubMed  Google Scholar 

  144. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004;66(6):2437–45.

    Article  CAS  PubMed  Google Scholar 

  145. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13(2):470–9.

    Article  PubMed  Google Scholar 

  146. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MWY, et al. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant. 2012;27(12):4445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Diaz-Buxo JA. Peritoneal dialysis solutions low in glucose degradation products: clinical experience and outcomes. Adv Perit Dial. 2007;23:132–4.

    CAS  PubMed  Google Scholar 

  148. Mortier S, De Vriese AS, McLoughlin RM, Topley N, Schaub TP, Passlick-Deetjen J, et al. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol. 2003;14(5):1296–306.

    Article  PubMed  Google Scholar 

  149. Boulanger E, Wautier MP, Wautier JL, Boval B, Panis Y, Wernert N, et al. AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. Kidney Int. 2002;61(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  150. Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity: impact of more biocompatible solutions. Nephrol Dial Transplant. 2002;17(Suppl 3):12–5.

    Article  CAS  PubMed  Google Scholar 

  151. Furkert J, Zeier M, Schwenger V. Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Perit Dial Int. 2008;28(6):637–40.

    Article  PubMed  Google Scholar 

  152. Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int. 2005;25:248–55.

    Article  PubMed  Google Scholar 

  153. Stankovic-Popovic V, Nesic V, Popovic D, Maksic D, Colic M, Vasilijic S, et al. Effects of conventional versus biocompatible peritoneal dialysis solutions on peritoneal and systemic inflammation, malnutrition and atherosclerosis in CAPD patients. Clin Nephrol. 2011;76(4):314–22.

    Article  CAS  PubMed  Google Scholar 

  154. Fan SL, Pile T, Punzalan S, Raftery MJ, Yaqoob MM. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 2008;73(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  155. Schmitt CP, Haraldsson B, Doetschmann R, Zimmering M, Greiner C, Boswald M, et al. Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney Int. 2002;61(4):1527–36.

    Article  PubMed  Google Scholar 

  156. Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, et al. Biocompatibility and tolerability of a purely bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int. 2009;29(6):647–55.

    Article  CAS  PubMed  Google Scholar 

  157. Cho KH, Do JY, Park JW, Yoon KW, Kim YL. The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 2013;33(4):382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choi HY, Kim DK, Lee TH, Moon SJ, Han SH, Lee JE, et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit Dial Int. 2008;28(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  159. Kim YL, Do J, Park SH, Cho K, Park J, Yoon K, et al. Low glucose degradation products dialysis solution modulates the levels of surrogate markers of peritoneal inflammation, integrity, and angiogenesis: preliminary report. Nephrology (Carlton). 2003;8(Suppl):S28–32.

    Article  CAS  Google Scholar 

  160. Park SH, Do JY, Kim YH, Lee HY, Kim BS, Shin SK, et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study. Nephrol Dial Transplant. 2012;27(3):1191–9.

    Article  CAS  PubMed  Google Scholar 

  161. Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products – a 1-year randomized control trial. Nephrol Dial Transplant. 2007;22(2):552–9.

    Article  CAS  PubMed  Google Scholar 

  162. Szeto CC, Kwan BC, Chow KM, Cheng PM, Kwong VW, Choy AS, et al. The effect of neutral peritoneal dialysis solution with low glucose-degradation-product on the fluid status and body composition – a randomized control trial. PLoS One. 2015;10(10):e0141425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Bajo MA, Perez-Lozano ML, Albar-Vizcaino P, del Peso G, Castro MJ, Gonzalez-Mateo G, et al. Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol Dial Transplant. 2011;26(1):282–91.

    Article  CAS  PubMed  Google Scholar 

  164. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Yin MFW, et al. Biocompatible versus standard peritoneal dialysis fluid – the balANZ trial. J Am Soc Nephrol. 2012;23:1097–107.

    Google Scholar 

  165. Fernandez-Perpen A, Perez-Lozano ML, Bajo MA, Albar-Vizcaino P, Sandoval Correa P, del Peso G, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 2012;32(3):292–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim SG, Kim S, Hwang YH, Kim K, Oh JE, Chung W, et al. Could solutions low in glucose degradation products preserve residual renal function in incident peritoneal dialysis patients? A 1-year multicenter prospective randomized controlled trial (Balnet Study). Perit Dial Int. 2008;28(Suppl 3):S117–22.

    Article  CAS  PubMed  Google Scholar 

  167. Sikaneta T, Wu G, Abdolell M, Ng A, Mahdavi S, Svendrovski A, et al. The trio trial – a randomized controlled clinical trial evaluating the effect of a biocompatible peritoneal dialysis solution on residual renal function. Perit Dial Int. 2016;36(5):526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lai KN, Lam MF, Leung JCK, Chan LY, Lam CWK, Chan IHS, et al. A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products. Perit Dial Int. 2012;32:280–91.

    Google Scholar 

  169. Htay H, Johnson DW, Wiggins KJ, Badve SV, Craig JC, Strippoli GF, et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2018;10:Cd007554.

    PubMed  Google Scholar 

  170. Cho Y, Johnson DW, Badve SV, Craig JC, Strippoli GFM, Wiggins KJ. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int. 2013;84(5):969–79.

    Article  CAS  PubMed  Google Scholar 

  171. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2014;3:CD007554.

    Google Scholar 

  172. Seo EY, An SH, Cho JH, Suh HS, Park SH, Gwak H, et al. Effect of biocompatible peritoneal dialysis solution on residual renal function: a systematic review of randomized controlled trials. Perit Dial Int. 2014;34(7):724–31.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wang J, Zhu N, Yuan W. Effect of neutral pH and low-glucose degradation product-containing peritoneal dialysis solution on residual renal function in peritoneal dialysis patients: a meta-analysis. Nephron. 2015;129(3):155–63.

    Article  CAS  PubMed  Google Scholar 

  174. Yohanna S, Alkatheeri AM, Brimble SK, McCormick B, Iansavitchous A, Blake PG, et al. Effect of neutral-pH, low-glucose degradation product peritoneal dialysis solutions on residual renal function, urine volume, and ultrafiltration: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2015;10(8):1380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Elphick EH, Teece L, Chess JA, Do JY, Kim YL, Lee HB, et al. Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol. 2018;13:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, et al. The effects of biocompatible compared with standard peritoneal dialysis solutions on peritonitis microbiology, treatment, and outcomes: the balANZ trial. Perit Dial Int. 2012;32(5):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yoo TH, Lee MJ, Oh HJ, Park JT, Han SH, Kang SW, et al. Is it beneficial to convert to a neutral-pH bicarbonate/lactate-buffered PD solution in long-term CAPD patients? A single-center prospective study. Perit Dial Int. 2015;35(3):366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59(1):348–57.

    Article  CAS  PubMed  Google Scholar 

  179. Fusshoeller A, Plail M, Grabensee B, Plum J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant. 2004;19(8):2101–6.

    Article  CAS  PubMed  Google Scholar 

  180. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, et al. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int. 1998;53(4):1061–7.

    Article  CAS  PubMed  Google Scholar 

  181. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int. 2001;59(4):1529–38.

    Article  CAS  PubMed  Google Scholar 

  182. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol. 2003;14(10):2632–8.

    Article  PubMed  Google Scholar 

  183. Carrasco AM, Rubio MA, Sanchez Tommero JA, Fernandez GF, Gonzalez RM, del Peso GG, et al. Acidosis correction with a new 25 mmol/l bicarbonate/15 mmol/l lactate peritoneal dialysis solution. Perit Dial Int. 2001;21(6):546–53.

    Article  CAS  PubMed  Google Scholar 

  184. Feriani M, Kirchgessner J, La Greca G, Passlick-Deetjen J. Randomized long-term evaluation of bicarbonate-buffered CAPD solution. Kidney Int. 1998;54(5):1731–8.

    Article  CAS  PubMed  Google Scholar 

  185. Kim S, Oh J, Kim S, Chung W, Ahn C, Kim SG, et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol Dial Transplant. 2009;24(9):2899–908.

    Article  PubMed  Google Scholar 

  186. Cho Y, Johnson DW. Does the use of neutral pH, low glucose degradation product peritoneal dialysis fluids lead to better patient outcomes? Curr Opin Nephrol Hypertens. 2014;23(2):192–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Krediet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Johnson, D.W., Krediet, R.T. (2022). New Peritoneal Dialysis Solutions and Solutions on the Horizon. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics