Skip to main content

Noninvasive Techniques for Quantification of Contact Dermatitis

  • Living reference work entry
  • First Online:
Contact Dermatitis

Abstract

The pathophysiology of contact dermatitis includes specific morphological and physiological changes in the skin as a result of the direct toxic effect of exogenous agents and the subsequent inflammatory cascade. These reactions can be quantified by a variety of noninvasive devices. Classical biophysical methods such as the assessment of transepidermal water loss, stratum corneum hydration, and laser Doppler flowmetry are widely used in the investigation, quantification, and discrimination of irritant and allergic reactions of the skin.

Novel in vivo techniques such as in vivo Raman spectroscopy have emerged, and the body of evidence on the skin microstructure is growing. Visualization techniques, e.g., reflectance spectroscopy and optical coherence tomography, are employed in studying the morphological changes in the skin of allergic reactions. Irritant and allergic contact dermatitis are both an active field for research and development novel methods in the characterization of cutaneous response.

The purpose of this chapter is to summarize the current knowledge on the morphological, functional, and biochemical composition of the skin in allergic and irritant skin reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Agner T, Serup J (1987) Skin reactions to irritants assessed by polysulfide rubber replica. Contact Dermatitis 17:205–211

    Article  CAS  PubMed  Google Scholar 

  2. Agner T, Serup J (1988) Contact thermography for assessment of skin damage due to experimental irritants. Acta Derm Venereol 68:192–195

    CAS  PubMed  Google Scholar 

  3. Agner T, Serup J (1990) Individual and instrumental variations in irritant patch-test reactions--clinical evaluation and quantification by bioengineering methods. Clin Exp Dermatol 15:29–33

    Article  CAS  PubMed  Google Scholar 

  4. Agner T, Serup J (1990) Sodium lauryl sulphate for irritant patch testing–a dose-response study using bioengineering methods for determination of skin irritation. J Invest Dermatol 95:543–547

    Article  CAS  PubMed  Google Scholar 

  5. Alda J, Castillo-Martinez C, Valdes-Rodriguez R et al (2013) Use of Raman spectroscopy in the analysis of nickel allergy. J Biomed Opt 18:061206

    Article  PubMed  Google Scholar 

  6. Astner S, Gonzalez E, Cheung A et al (2005) Pilot study on the sensitivity and specificity of in vivo reflectance confocal microscopy in the diagnosis of allergic contact dermatitis. J Am Acad Dermatol 53:986–992

    Article  PubMed  Google Scholar 

  7. Astner S, Gonzalez E, Cheung AC et al (2005) Non-invasive evaluation of the kinetics of allergic and irritant contact dermatitis. J Invest Dermatol 124:351–359

    Article  CAS  PubMed  Google Scholar 

  8. Baillie AJ, Biagioni PA, Forsyth A et al (1990) Thermographic assessment of patch-test responses. Br J Dermatol 122:351–360

    Article  CAS  PubMed  Google Scholar 

  9. Basketter D, Darlenski R, Fluhr JW (2008) Skin irritation and sensitization: mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol 21:191–202

    Article  CAS  PubMed  Google Scholar 

  10. Berardesca E, Loden M, Serup J et al (2018) The revised EEMCO guidance for the in vivo measurement of water in the skin. Skin Res Technol 24:351–358

    Article  PubMed  Google Scholar 

  11. Boone M, Jemec GB, Del Marmol V (2012) High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy. Exp Dermatol 21:740–744

    Article  PubMed  Google Scholar 

  12. Boone MA, Jemec GB, Del Marmol V (2015) Differentiating allergic and irritant contact dermatitis by high-definition optical coherence tomography: a pilot study. Arch Dermatol Res 307:11–22

    Article  CAS  PubMed  Google Scholar 

  13. Branco N, Lee I, Zhai H et al (2005) Long-term repetitive sodium lauryl sulfate-induced irritation of the skin: an in vivo study. Contact Dermatitis 53:278–284

    Article  CAS  PubMed  Google Scholar 

  14. Darlenski R, Sassning S, Tsankov N et al (2009) Non-invasive in vivo methods for investigation of the skin barrier physical properties. Eur J Pharm Biopharm 72:295–303

    Article  CAS  PubMed  Google Scholar 

  15. Fluhr J (2011) How to set up a scientific study in skin physiology. Springer, Berlin

    Google Scholar 

  16. Fluhr JW, Elias PM (2002) Stratum corneum pH: formation and function of the ‘Acid Mantle’. Exog Dermatol 1:163–175

    Article  CAS  Google Scholar 

  17. Fluhr JW, Kuss O, Diepgen T et al (2001) Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol 145:696–703

    Article  CAS  PubMed  Google Scholar 

  18. Fluhr JW, Darlenski R, Angelova-Fischer I et al (2008) Skin irritation and sensitization: mechanisms and new approaches for risk assessment. 1. Skin irritation. Skin Pharmacol Physiol 21:124–135

    Article  CAS  PubMed  Google Scholar 

  19. Fullerton A, Rode B, Serup J (2002) Skin irritation typing and grading based on laser Doppler perfusion imaging. Skin Res Technol 8:23–31

    Article  PubMed  Google Scholar 

  20. Gambichler T, Moussa G, Sand M et al (2005) Correlation between clinical scoring of allergic patch test reactions and optical coherence tomography. J Biomed Opt 10:064030

    Article  PubMed  Google Scholar 

  21. Gloor M, Senger B, Langenauer M et al (2004) On the course of the irritant reaction after irritation with sodium lauryl sulphate. Skin Res Technol 10:144–148

    Article  PubMed  Google Scholar 

  22. Hachem JP, Man MQ, Crumrine D et al (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125:510–520

    Article  CAS  PubMed  Google Scholar 

  23. Lademann J, Jacobi U, Surber C et al (2009) The tape stripping procedure–evaluation of some critical parameters. Eur J Pharm Biopharm 72:317–323

    Article  CAS  PubMed  Google Scholar 

  24. Ogawa-Fuse C, Morisaki N, Shima K et al (2019) Impact of water exposure on skin barrier permeability and ultrastructure. Contact Dermatitis 80:228–233

    Article  PubMed  Google Scholar 

  25. Peters K, Serup J (1987) Papulo-vesicular count for the rating of allergic patch test reactions. A simple technique based on polysulfide rubber replica. Acta Derm Venereol 67:491–495

    CAS  PubMed  Google Scholar 

  26. Pot LM, Coenraads PJ, Blomeke B et al (2016) Real-time detection of p-phenylenediamine penetration into human skin by in vivo Raman spectroscopy. Contact Dermatitis 74:152–158

    Article  CAS  PubMed  Google Scholar 

  27. Qassem M, Kyriacou PA (2014) Effectiveness of the DreamSkin(R) garment on relieving symptoms of eczema/dermatitis using electrical and spectroscopic methods: a case study. Conf Proc IEEE Eng Med Biol Soc 2014:3723–3726

    CAS  Google Scholar 

  28. Rajabi-Estarabadi A, Tsang DC, Nouri K et al (2019) Evaluation of positive patch test reactions using optical coherence tomography: a pilot study. Skin Res Technol. https://doi.org/10.1111/srt.12695. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  29. Ruini C, Wittmann D, Summer B et al (2019) Nickel contact dermatitis evaluated by means of optical coherence tomography: first impressions. J Eur Acad Dermatol Venereol 33:e265–e267

    Article  CAS  PubMed  Google Scholar 

  30. Samhaber KT, Buhl T, Brauns B et al (2016) Morphologic criteria of vesiculobullous skin disorders by in vivo reflectance confocal microscopy. J Dtsch Dermatol Ges 14:797–805

    PubMed  Google Scholar 

  31. Sato A, Obata K, Ikeda Y et al (1996) Evaluation of human skin irritation by carboxylic acids, alcohols, esters and aldehydes, with nitrocellulose-replica method and closed patch testing. Contact Dermatitis 34:12–16

    Article  CAS  PubMed  Google Scholar 

  32. Schmid-Wendtner MH, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19:296–302

    Article  PubMed  Google Scholar 

  33. Serup J, Staberg B (1987) Ultrasound for assessment of allergic and irritant patch test reactions. Contact Dermatitis 17:80–84

    Article  CAS  PubMed  Google Scholar 

  34. Serup J, Staberg B, Klemp P (1984) Quantification of cutaneous oedema in patch test reactions by measurement of skin thickness with high-frequency pulsed ultrasound. Contact Dermatitis 10:88–93

    Article  CAS  PubMed  Google Scholar 

  35. Serup J, Winther A, Blichmann C (1989) A simple method for the study of scale pattern and effects of a moisturizer–qualitative and quantitative evaluation by D-Squame tape compared with parameters of epidermal hydration. Clin Exp Dermatol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  36. Smith HR, Rowson M, Basketter DA et al (2004) Intra-individual variation of irritant threshold and relationship to transepidermal water loss measurement of skin irritation. Contact Dermatitis 51:26–29

    Article  CAS  PubMed  Google Scholar 

  37. Staberg B, Klemp P, Serup J (1984) Patch test responses evaluated by cutaneous blood flow measurements. Arch Dermatol 120:741–743

    Article  CAS  PubMed  Google Scholar 

  38. Tkaczyk E (2017) Innovations and developments in dermatologic non-invasive optical imaging and potential clinical applications. Acta Derm Venereol Suppl 218:5–13

    Google Scholar 

  39. Verdier-Sevrain S, Bonte F (2007) Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 6:75–82

    Article  PubMed  Google Scholar 

  40. Wahlberg JE, Nilsson G (1984) Skin irritancy from propylene glycol. Acta Derm Venereol 64:286–290

    CAS  PubMed  Google Scholar 

  41. Zuang V, Rona C, Archer G et al (2000) Detection of skin irritation potential of cosmetics by non-invasive measurements. Skin Pharmacol Appl Ski Physiol 13:358–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim W. Fluhr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fluhr, J.W., Darlenski, R. (2020). Noninvasive Techniques for Quantification of Contact Dermatitis. In: Johansen, J., Mahler, V., Lepoittevin, JP., Frosch, P. (eds) Contact Dermatitis. Springer, Cham. https://doi.org/10.1007/978-3-319-72451-5_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72451-5_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72451-5

  • Online ISBN: 978-3-319-72451-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics