Skip to main content

Mechanical Properties of Carbon Nanotube–Polymer Composites

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) are the most promising and extensively used filler material for composite reinforcement due to their exceptional mechanical properties. In this chapter, we discuss the advancement so far in the area of mechanical reinforcement of polymer matrix systems using CNTs. Firstly, the fundamental of CNT structure and the polymer matrices used in CNTs are introduced and the basics for effective reinforcement are presented. The evolution and most recent stage in the development of various processing and manufacturing techniques for CNT-reinforced composites is discussed. Moreover, we discuss the system requirements and factors influencing the mechanical behavior of CNT-based nanocomposites. Also, the effect of CNT/polymer interfacial characteristics and filler dispersion state on the mechanical properties and damage profile of the nanocomposite materials are discussed. Finally, we conclude by emphasizing the feature perspective and challenges for the development of CNT-based nanocomposites that may find use in future high-performance material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan P, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265(5176):1212–1214

    CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater 12(10):750–753

    CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. John Wiley & Sons

    Google Scholar 

  • Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opinion Solid State Mater Sci 8(1):31–37

    CAS  Google Scholar 

  • Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017

    CAS  Google Scholar 

  • Bacon R (1960) Growth, structure, and properties of graphite whiskers. J Appl Phys 31(2):283–290

    Google Scholar 

  • Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29

    CAS  Google Scholar 

  • Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 64(15):2283–2289

    CAS  Google Scholar 

  • Basheer BV, George JJ, Siengchin S, Parameswaranpillai J (2020) Polymer grafted carbon nanotubes—synthesis, properties, and applications: a review. Nano-Struct Nano-Objects 22:100429. https://doi.org/10.1016/j.nanoso.2020.100429

    Article  CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    CAS  Google Scholar 

  • Bethune D, Kiang CH, De Vries M, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    CAS  Google Scholar 

  • Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    CAS  Google Scholar 

  • Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    CAS  Google Scholar 

  • Cadek M, Murphy R, McCarthy B, Drury A, Lahr B, Barklie R et al (2002) Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon 40(6):923–928

    CAS  Google Scholar 

  • Cao J, Wang Q, Rolandi M, Dai H (2004) Aharonov-bohm interference and beating in single-walled carbon-nanotube interferometers. Phys Rev Lett 93(21):216803

    Google Scholar 

  • Chazot CAC, Hart AJ (2019) Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials. Compos Sci Technol 183:107795. https://doi.org/10.1016/j.compscitech.2019.107795

    Article  CAS  Google Scholar 

  • Che G, Lakshmi B, Martin C, Fisher E, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10(1):260–267

    CAS  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  • Cooper C, Young R, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos A: Appl Sci Manuf 32(3–4):401–411

    Google Scholar 

  • Ćosić M, Petrović S, Nešković N (2019) Quantum rainbows in positron transmission through carbon nanotubes. Atoms 7(1):16

    Google Scholar 

  • Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille J-Y, Forro L (2005) Multiwalled carbon nanotube/polymer nanocomposites: processing and properties. J Polym Sci B Polym Phys 43(10):1186–1197

    CAS  Google Scholar 

  • Dassios KG, Galiotis C (2012) Polymer–nanotube interaction in MWCNT/poly(vinyl alcohol) composite mats. Carbon 50(11):4291–4294. https://doi.org/10.1016/j.carbon.2012.04.042

    Article  CAS  Google Scholar 

  • Ding W, Eitan A, Fisher F, Chen X, Dikin D, Andrews R et al (2003) Direct observation of polymer sheathing in carbon nanotube−polycarbonate composites. Nano Lett 3(11):1593–1597

    CAS  Google Scholar 

  • Du J, Bai J, Cheng H (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1(5):253–273

    CAS  Google Scholar 

  • Dufresne A, Paillet M, Putaux J, Canet R, Carmona F, Delhaes P, Cui S (2002) Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37(18):3915–3923

    CAS  Google Scholar 

  • Falvo MR, Clary G, Taylor RM, Chi V, Brooks F, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    CAS  Google Scholar 

  • Fang R, Chen K, Yin L, Sun Z, Li F, Cheng HM (2019) The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries. Adv Mater 31(9):1800863

    Google Scholar 

  • Frank S, Poncharal P, Wang Z, De Heer WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746

    CAS  Google Scholar 

  • Garg A, Sinnott SB (1998) Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem Phys Lett 295(4):273–278

    CAS  Google Scholar 

  • Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50(21):4979–4997

    CAS  Google Scholar 

  • Haggenmueller R, Gommans H, Rinzler A, Fischer JE, Winey K (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3–4):219–225

    CAS  Google Scholar 

  • Han Y, Zhang X, Yu X, Zhao J, Li S, Liu F et al (2015) Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci Rep 5(1):1–9

    CAS  Google Scholar 

  • Heo JS, Eom J, Kim YH, Park SK (2018) Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3):1703034

    Google Scholar 

  • Hindumathi R, Jagannatham M, Haridoss P, Sharma CP (2018) Novel nano-cocoon like structures of polyethylene glycol–multiwalled carbon nanotubes for biomedical applications. Nano-Struct Nano-Objects 13:30–35

    CAS  Google Scholar 

  • Hone J, Llaguno M, Biercuk M, Johnson A, Batlogg B, Benes Z, Fischer J (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74(3):339–343

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    CAS  Google Scholar 

  • Jia Z, Ma H-L, Cheng L-K, Lau K-T, Hui D, Yuan G (2016) Stress transfer properties of carbon nanotube reinforced polymer composites at low temperature environments. Compos Part B 106:356–365

    CAS  Google Scholar 

  • Kalfon-Cohen E, Kopp R, Furtado C, Ni X, Arteiro A, Borstnar G et al (2018) Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates. Compos Sci Technol 166:160–168

    CAS  Google Scholar 

  • Karami M, Bahabadi MA, Delfani S, Ghozatloo A (2014) A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells 121:114–118

    CAS  Google Scholar 

  • Kelly BT (1981) Physics of graphite. Appl Sci 386–470

    Google Scholar 

  • Kelly A, Macmillan NH (1986) Strong solids. Oxford University Press

    Google Scholar 

  • Kilbride B e, Coleman J, Fraysse J, Fournet P, Cadek M, Drury A et al (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92(7):4024–4030

    CAS  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502

    CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163

    CAS  Google Scholar 

  • Lau K-T, Lu M, Lam C-K, Cheung H-Y, Sheng F-L, Li H-L (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol 65(5):719–725

    CAS  Google Scholar 

  • Li Q, Zaiser M, Koutsos V (2004) Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys Status Solidi A 201(13):R89–R91

    CAS  Google Scholar 

  • Li J, Ma PC, Chow WS, To, C. K, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215

    CAS  Google Scholar 

  • Li Y, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos Part B 133:35–41

    CAS  Google Scholar 

  • Lordi V, Yao N (2000) Molecular mechanics of binding in carbon-nanotube–polymer composites. J Mater Res 15(12):2770–2779

    CAS  Google Scholar 

  • Lu JP (1997) Elastic properties of single and multilayered nanotubes. J Phys Chem Solids 58(11):1649–1652

    CAS  Google Scholar 

  • Manchado ML, Valentini L, Biagiotti J, Kenny J (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505

    CAS  Google Scholar 

  • Miko C, Milas M, Seo JW, Couteau E, Barišić N, Gaal R, Forró L (2003) Effect of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes. Appl Phys Lett 83(22):4622–4624

    CAS  Google Scholar 

  • Moore EM, Ortiz DL, Marla VT, Shambaugh RL, Grady BP (2004) Enhancing the strength of polypropylene fibers with carbon nanotubes. J Appl Polym Sci 93(6):2926–2933

    CAS  Google Scholar 

  • Morgan P (2005) Carbon fibers and their composites. CRC Press

    Google Scholar 

  • Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12(1):21

    CAS  Google Scholar 

  • Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Physik D Atoms, Molecules Clusters 27(1):93–96

    CAS  Google Scholar 

  • Paci JT, Furmanchuk A o, Espinosa HD, Schatz GC (2014) Shear and friction between carbon nanotubes in bundles and yarns. Nano Lett 14(11):6138–6147

    CAS  Google Scholar 

  • Park O-K, Lee W, Hwang JY, You N-H, Jeong Y, Kim SM, Ku B-C (2016) Mechanical and electrical properties of thermochemically cross-linked polymer carbon nanotube fibers. Compos A: Appl Sci Manuf 91:222–228

    CAS  Google Scholar 

  • Poncharal P, Wang Z, Ugarte D, De Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516

    CAS  Google Scholar 

  • Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compo Interf 10(4–5):389–404

    Google Scholar 

  • Puretzky A, Geohegan D, Fan X, Pennycook S (2000) In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys Lett 76(2):182–184

    CAS  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    CAS  Google Scholar 

  • Rao C, Cheetham A (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11(12):2887–2894

    CAS  Google Scholar 

  • Raravikar NR, Schadler LS, Vijayaraghavan A, Zhao Y, Wei B, Ajayan PM (2005) Synthesis and characterization of thickness-aligned carbon nanotube− polymer composite films. Chem Mater 17(5):974–983

    CAS  Google Scholar 

  • Rinzler A, Hafner J, Nikolaev P, Nordlander P, Colbert D, Smalley R et al (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269(5230):1550–1553

    CAS  Google Scholar 

  • Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822

    CAS  Google Scholar 

  • Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stöckli T, Méténier K et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11(2):161–165

    CAS  Google Scholar 

  • Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971. https://doi.org/10.1016/S0032-3861(99)00166-4

    Article  CAS  Google Scholar 

  • Slattery AD, Shearer CJ, Shapter JG, Blanch AJ, Quinton JS, Gibson CT (2018) Improved application of carbon nanotube atomic force microscopy probes using peakforce tapping mode. Nano 8(10):807

    Google Scholar 

  • Smail F, Boies A, Windle A (2019) Direct spinning of CNT fibres: past, present and future scale up. Carbon 152:218–232

    CAS  Google Scholar 

  • Tavasoli A, Sadagiani K, Khorashe F, Seifkordi A, Rohani A, Nakhaeipour A (2008) Cobalt supported on carbon nanotubes—a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process Technol 89(5):491–498

    CAS  Google Scholar 

  • Tolt ZL, Mckenzie C, Espinosa R, Snyder S, Munson M (2008) Carbon nanotube cold cathodes for application in low current x-ray tubes. J Vac Sci Technol B 26(2):706–710

    CAS  Google Scholar 

  • Tran TQ, Fan Z, Liu P, Myint SM, Duong HM (2016) Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99:407–415

    CAS  Google Scholar 

  • Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680

    CAS  Google Scholar 

  • Trompeta A-FA, Koumoulos EP, Stavropoulos SG, Velmachos TG, Psarras GC, Charitidis CA (2019) Assessing the critical multifunctionality threshold for optimal electrical, thermal, and nanomechanical properties of carbon nanotubes/epoxy nanocomposites for aerospace applications. Aerospace 6(1):7

    Google Scholar 

  • Vijayaraghavan V, Dethan JF, Garg A (2018) Nanomechanics and modelling of hydrogen stored carbon nanotubes under compression for PEM fuel cell applications. Comput Mater Sci 146:176–183

    CAS  Google Scholar 

  • Wagner HD, Vaia RA (2004) Nanocomposites: issues at the interface. Mater Today 7(11):38–42

    CAS  Google Scholar 

  • Wang X, Jiang Q, Xu W, Cai W, Inoue Y, Zhu Y (2013) Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon 53:145–152

    CAS  Google Scholar 

  • Watts P, Hsu W (2003) Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14(5):L7

    CAS  Google Scholar 

  • Wei C, Srivastava D, Cho K (2004) Structural ordering in nanotube polymer composites. Nano Lett 4(10):1949–1952

    CAS  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    CAS  Google Scholar 

  • Xie S, Li W, Pan Z, Chang B, Sun L (2000) Mechanical and physical properties on carbon nanotube. J Phys Chem Solids 61(7):1153–1158

    CAS  Google Scholar 

  • Xu X, Thwe MM, Shearwood C, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81(15):2833–2835

    CAS  Google Scholar 

  • Yang M, Koutsos V, Zaiser M (2005) Interactions between polymers and carbon nanotubes: a molecular dynamics study. J Phys Chem B 109(20):10009–10014

    CAS  Google Scholar 

  • Yang M, Pan J, Xu A, Luo L, Cheng D, Cai G et al (2018) Conductive cotton fabrics for motion sensing and heating applications. Polymers 10(6):568

    Google Scholar 

  • Yu M-F, Files BS, Arepalli S, Ruoff RS (2000a) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552

    CAS  Google Scholar 

  • Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000b) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    CAS  Google Scholar 

  • Zhang R, Ying C, Gao H, Liu Q, Fu X, Hu S (2019) Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Compos Sci Technol 171:218–225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Dhakal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhakal, H.N., Andrew, J.J. (2021). Mechanical Properties of Carbon Nanotube–Polymer Composites. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics