Skip to main content

3D Subtractive Printing with Ultrashort Laser Pulses

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

The recent evolution in fast 3D ablation are overviewed in the context of 3D printing and in terms of the new burst laser mode of operation, which delivers previously unexplored capabilities for material processing. Material removal rates at different ablation modes are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anand V, Maksimovic J, Katkus T, Ng SH, Ulčinas O, Mikutis M, Baltrukonis J, Urbas A, Šlekys G, Ogura H, Sagae D, Pikuz T, Somekawa T, Ozaki N, Vailionis A, Seniutinas G, Mizeikis V, Glazebrook K, Brodie JP, Stoddart PR, Rapp L, Rode AV, Gamaly EG, Juodkazis S (2020) All femtosecond optical pump and X-ray probe: holey-axicon for free electron lasers. J Opt Photonics 1:(accepted)

    Google Scholar 

  • Böhme R, Braun A, Zimmer K (2002) Backside etching of uv-transparent materials at the interface to liquids. Appl Surf Sci 186(1–4):276–281

    Article  ADS  Google Scholar 

  • Buividas R, Rekstyte S, Malinauskas M, Juodkazis S (2013) Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses. Opt Mat Express 3(10):1674–1686

    Article  ADS  Google Scholar 

  • Buividas R, Mikutis M, Juodkazis S (2014) Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quant Electron 38:119–156

    Article  ADS  Google Scholar 

  • Butkus S, Jukna V, Paipulas D, Barkauskas M, Sirutkaitis V (2020) Micromachining of invar foils with GHz, MHz and kHz femtosecond burst modes. Micromachines 11:733

    Article  Google Scholar 

  • Chu W, Tan Y, Wang P, Xu J, Li W, Qi J, Cheng Y (2018) Centimeter-height 3d printing with femtosecond laser two-photon polymerization. Adv Mater Technol 3(5):1700396

    Article  Google Scholar 

  • Cummings CS, Bleakney W (1940) Products of ionization by electron impact in methyl and ethyl alcohol. Phys Rev 58:787

    Article  ADS  Google Scholar 

  • Förster DJ, Faas S, Gröninger S, Bauer F, Michalowski A, Weber R, Graf T (2018) Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses. Appl Surf Sci 440:926–931

    Article  ADS  Google Scholar 

  • Gaižauskas E, Vanagas E, Jarutis V, Juodkazis S, Mizeikis V, Misawa H (2006) Discrete damage traces from filamentation of Bessel-gauss pulses. Opt Lett 31(1):80–82

    Article  ADS  Google Scholar 

  • Gamaly E, Rode A (2019) Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Appl Phys A 124(3):278

    Article  ADS  Google Scholar 

  • Gedvilas M, Miksys J, Raciukaitis G (2015) Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv 5:75075–75080. https://doi.org/10.1039/C5RA14210E

    Article  ADS  Google Scholar 

  • Gedvilas M, Mikšys J, Berzinš J, Stankevič V, Račiukaitis G (2017) Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers. Sci Rep 7(1):5218

    Article  ADS  Google Scholar 

  • Gissibl T, Thiele S, Herkommer A, Giessen H (2016) Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Comm 7:11763

    Article  ADS  Google Scholar 

  • Gottmann J, Hermans M, Repiev N, Ortmann J (2017a) Selective laser-induced etching of 3D precision quartz glass components for microfluidic applicationsâĂ Ťup-scaling of complexity and speed. Micromachines 8:110

    Article  Google Scholar 

  • Gottmann J, Hermans M, Repiev N, Ortmann J (2017b) Selective laser-induced etching of 3d precision quartz glass components for microfluidic applicationsâĂ Ťup-scaling of complexity and speed. Micromachines 8(4). https://doi.org/10.3390/mi8040110

  • Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784

    Article  Google Scholar 

  • Hsu WH, Masim F, Balcytis A, Huang HH, Yonezawa T, Kuchmizhak A, Juodkazis S, Hatanaka K (2018) Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation. Beilstein J Nanotechnol 9:2609âĂŞ2617

    Article  Google Scholar 

  • Hua JG, Ren H, Jia A, Tian ZN, Wang L, Juodkazis S, Chen QD, Sun HB (2020) Convex silica microlens arrays via femtosecond laser writing. Opt Lett 45(3):636–639

    Article  ADS  Google Scholar 

  • Jayawardhana S, Rosa L, Juodkazis S, Stoddart PR (2013) Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism. Sci Rep 3:2335

    Article  ADS  Google Scholar 

  • Jonusauskas L, Skliutas E, Butkus S, Malinauskas M (2015) Custom on demand 3D printing of functional microstructures. Lith J Phys 55(3)

    Google Scholar 

  • Jonusauskas L, Rekstyte S, Buividas R, Butkus S, Gadonas R, Juodkazis S, Malinauskas M (2017) Hybrid subtractive-additive-welding microfabrication for lab-on-chip (loc) applications via single amplified femtosecond laser source. Opt Eng 56(9):094108

    Article  ADS  Google Scholar 

  • Jonusauskas L, Gailevicius D, Rekstyte S, Baldacchini T, Juodkazis S, Malinauskas M (2019) Mesoscale laser 3d printing. Opt Express 27(11):15205–15221

    Article  ADS  Google Scholar 

  • Juodkazis S (2020) 3D laser printing: high resolution and throughput. In: Conference on lasers and electro-optics OSA technical digest. Optical Society of America. OSA, p SF2R.1

    Google Scholar 

  • Juodkazis S, Okuno H, Kujime N, Matsuo S, Misawa H (2004) Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure. Appl Phys A 79:1555–1559. https://doi.org/10.1007/s00339-004-2846-0

    Article  ADS  Google Scholar 

  • Juodkazis S, Misawa H, Maksimov I (2004a) Thermal accumulation effect in three-dimensional recording by picosecond pulses. Appl Phys Lett 85(22):5239–5241

    Article  ADS  Google Scholar 

  • Juodkazis S, Yamasaki K, Mizeikis V, Matsuo S, Misawa H (2004b) Formation of embedded patterns in glasses using femtosecond irradiation. Appl Phys A Mater Sci Process 79(4–6):1549–1553

    Article  ADS  Google Scholar 

  • Juodkazis S, Mizeikis V, Seet KK, Miwa M, Misawa H (2005) Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnol 16:846–849

    Article  ADS  Google Scholar 

  • Juodkazis S, Nishimura K, Misawa H (2007) In-bulk and surface structuring of sapphire by femtosecond pulses. Appl Surf Sci 253(15):6539–6544

    Article  ADS  Google Scholar 

  • Juodkazis S, Nishi Y, Misawa H (2008) Femtosecond laser-assisted formation of channels in sapphire using KOH solution. RRL Phys Stat Sol 2(6):275–277

    Article  Google Scholar 

  • Kerse CS, Kalaycioğlu H, Elahi P, Çetin B, Kesim DK, Akçaalan Ö, Yavaş S, Aşik MD, Öktem B, Hoogland H, Holzwarth R, Ilday FÖ (2016) Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537:84–88

    Article  ADS  Google Scholar 

  • Knappe R, Haloui H, Seifert A, Weis A, Nebel A (2010) Scaling ablation rates for picosecond lasers using burst micromachining. SPIE Proc:7585. https://doi.org/10.1117/12.842318

  • Kudrius T, Šlekys G, Juodkazis S (2010) Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J Phys D Appl Phys 43(14):145501

    Article  ADS  Google Scholar 

  • Li QL, Lu YM, Hua JG, Yu YH, Wang L, Chen QD, Juodkazis S, Sun HB (2017) Multilevel phase-type diffractive lens embedded in sapphire. Opt Lett 42(19):3832–3835

    Article  ADS  Google Scholar 

  • Li Z, Wang L, Fan H, Yu Y, Chen Q, Juodkazis S, Sun H (2020) O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl 9(1):41

    Article  Google Scholar 

  • Lin Z, Liu H, Ji L, Lin W, Hong M (2020) Realization of 10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20(7):4947âĂŞ4952

    Article  Google Scholar 

  • Liu X, Yu L, Yang S, Chen Q, Wang L, Juodkazis S, Sun H (2019a) Optical nanofabrication of concave microlens arrays. Laser Photon Rev 13:1800272

    Article  ADS  Google Scholar 

  • Liu XQ, Bai BF, Chen QD, Sun HB (2019b) Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2:190021

    Google Scholar 

  • Liu H, Li Y, Lin W, Hong M (2020) High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Opt Laser Technol 132:106472

    Article  Google Scholar 

  • Luther-Davies B, Rode A, Madsen N, Gamaly EG (2005) Picosecond high-repitition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses. Opt Eng 44:051102

    Article  ADS  Google Scholar 

  • Malinauskas M, Rekstyte S, Lukosevicius L, Butkus S, Balciunas E, Peciukaityte M, Baltriukiene D, Bukelskiene V, Butkevicius A, Kucevicius P, Rutkunas V, Juodkazis S (2014) 3d microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5(4):839–858

    Article  Google Scholar 

  • Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S (2016) Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5(8):e16133

    Article  ADS  Google Scholar 

  • Marcinkevicius A, Juodkazis S, Matsuo S, Mizeikis V, Misawa H (2001) Application of Bessel beams for microfabrication of dielectrics by femtosecond laser. Jpn J Appl Phys 40(11A):L1197–L1199

    Article  ADS  Google Scholar 

  • Marrian C, Tennant D (2003) Nanofabrication. J Vac Sci Technol A 21:S207âĂŞS215

    Article  Google Scholar 

  • Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photonabsorbed photopolymerization. Opt Lett 22(2):132–134

    Article  ADS  Google Scholar 

  • Matsumoto H, Lin Z, Kleinert J (2018) Ultrafast laser ablation of copper with ghz bursts. SPIE proc, In, p 10519

    Google Scholar 

  • Matsuo S, Juodkazis S, Misawa H (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A Mater Sci Process 80(4):683–685

    Article  ADS  Google Scholar 

  • Matsuo S, Tabuchi Y, Okada T, Juodkazis S, Misawa H (2007) Femtosecond laser assisted etching of quartz: microstructuring from inside. Appl Phys A 84(1–2):99–102

    ADS  Google Scholar 

  • Metzner D, Lickschat P, Weißmantel S (2019) Investigations of qualitative aspects with burst mode ablation of silicon and cemented tungsten carbide. Appl Phys A:125. https://doi.org/10.1007/s00339-019-2696-4

  • Mikutis M, Kudrius T, Šlekys G, Paipulas D, Juodkazis S (2013) High 90% efficiency Bragg gratings formed in fused silica by femtosecond gauss-Bessel laser beams. Opt Mat Express 3(11):1862–1871

    Article  ADS  Google Scholar 

  • Mizunami T, Takagi K (1994) Wavelength dependence of two-photon absorption properties of silica optical fibers. Opt Lett 19(7):463

    Article  ADS  Google Scholar 

  • Mourou G, Tajima T, Bulanov S (2006) Optics in the relativistic regime. Rev Mod Phys 78:309

    Article  ADS  Google Scholar 

  • Mur J, Petkovšek J (2019) Near-thz bursts of pulses – governing surface ablation mechanisms for laser material processing. Appl Surf Sci 478:355–360

    Article  ADS  Google Scholar 

  • Neuenschwander B, Jaeggi B, Foerster DJ, Kramer T, Remund S (2019) Influence of the burst mode onto the specific removal rate for metals and semiconductors. J Laser Appl 31(2):022203

    Article  Google Scholar 

  • Noyes WA Jr (1935) The ionization potential of acetone vapor. J Chem Phys 3:430–432

    Article  ADS  Google Scholar 

  • Seniutinas G, Balčytis A, Reklaitis I, Chen F, Davis J, David C, Juodkazis S (2017) Tipping solutions: emerging 3d nano-fabrication/−imaging technologies. Nano 6(5):923–941

    Google Scholar 

  • Sugioka K (2019) Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. Int J Extrem Manuf 1:012003

    Article  Google Scholar 

  • Sun H, Kawata S (2004) Two-photon Photopolymerization and 3D lithographic microfabrication. Springer, Berlin

    Google Scholar 

  • Sun K, Suzuki N, Li Z, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H (2008) Electrophoretic chip for fractionation of selective DNA fragment. Electrophoresis 29(19):3959–3963

    Article  Google Scholar 

  • Tickunas T, Perrenoud M, Butkus S, Gadonas R, Rekstyte S, Malinauskas M, Paipulas D, Bellouard Y, Sirutkaitis V (2017) Combination of additive and subtractive laser 3d microprocessing in hybrid glass/polymer microsystems for chemical sensing applications. Opt Express 25(21):26280

    Article  ADS  Google Scholar 

  • Wang J, Niino H, Yabe A (1999) One-step microfabrication of fused silica by laser ablation of an organic solution. Appl Phys A 68(1):111âĂŞ113

    Article  Google Scholar 

  • Wang L, Chen Q, Cao X, Buividas R, Wang X, Juodkazis S, Sun H (2017) Plasmonic nanoprinting: large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl 6(12):e17112

    Article  Google Scholar 

  • Wang C, Yang L, Zhang C, Rao S, Wang Y, Wu S, Li J, Hu Y, Wu D, Chu J et al (2019) Multilayered skyscraper microchips fabricated by hybrid âĂIJan-in-oneâĂİ femtosecond laser processing. Microsyst Nanoeng 5(1):17

    Article  ADS  Google Scholar 

  • Xu J, Kawano H, Liu W, Hanada Y, Lu P, Miyawaki A, Midorikawa K, Sugioka K (2017) Controllable alignment of elongated microorganisms in a 3d microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. Microsyst Nanoengin 3:16078

    Article  Google Scholar 

  • Zhang C, Zhang J, Chen R, Li J, Wang C, Cao R, Zhang J, Ye H, Zhai H, Sugioka K (2020) Rapid fabrication of high-resolution multi-scale microfluidic devices based on the scanning of patterned femtosecond laser. Opt Lett 45(14):3929–3932

    Article  ADS  Google Scholar 

  • Zheng Y, Rosa L, Thai T, Ng SH, Juodkazis S, Bach U (2019) Phase controlled SERS enhancement. Sci Rep 9:744

    Google Scholar 

  • Zhou R, Lin S, Ding Y, Yang H, Ong Y, Hong M (2018) Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1:180014

    Article  Google Scholar 

Download references

Acknowledgments

EU LASERLAB-EUROPE (grant agreement No. 871124, Horizon 2020 research and innovation program) project is acknowledged for the financial support. Window-on-Photonics R&D, Ltd. is acknowledged for joint development grant and laser fabrication facility. Fs-laser fabrication was supported via the Australian Research Council grants DP190103284 and LP190100505. Discussion of various aspects of light-matter interactions on ultrashort times and small volumes with colleagues and coauthors Professors E. Gamaly, Y. Bellouard, Y. Hayasaki, K. Hatanaka, A. Rode, L. Zhigilei, and A. Dubietis were very helpful for our own research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangirdas Malinauskas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hock Ng, S., Malinauskas, M., Juodkazis, S. (2021). 3D Subtractive Printing with Ultrashort Laser Pulses. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics