Skip to main content

Laser Cleaning of Contaminated Substrate Surfaces

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering
  • 449 Accesses

Abstract

As a regular maintenance and repair procedure in manufacturing industries, removal of surface contaminants could be executed by environment-friendly laser cleaning technologies, including dry laser cleaning, steam laser cleaning, or laser shockwave cleaning, which is defined by the applied medium during cleaning process. Based on the mechanisms behind the various types of laser cleaning, a series of researches have been conducted to enhance the cleaning quality and efficiency. Evaluation of surface damage stands as one of the key issues to be concerned during laser cleaning, involving morphology and chemical composition change, defect formation, and material distortion. Four typical cases are presented to indicate the feasibility of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Apostol IG, Ulieru DG, Dabu RV, Ungureanu C, Rusen L (2002) Laser cleaning in the process of electronic device production. Proc SPIE Int Soc Opt Eng 4762:235–238

    ADS  Google Scholar 

  • Arnold N (2003) Theoretical description of dry laser cleaning. Appl Surf Sci 208–209:15–22

    ADS  Google Scholar 

  • Azzeer AM, Aldwayyan AS, Alsalhi MS, Kamal AM, Harith MA (1996) Optical probing of laser-induced shock waves in air. Appl Phys B Lasers Opt 63:307–310

    ADS  Google Scholar 

  • Bäuerle D (2000) Laser processing and chemistry. Springer, Berlin

    Google Scholar 

  • Boughaba S, Wu X, Sacher E, Meunier M (1997) Liquid explosive evaporative removal of submicron particles from hydrophilic oxidized silicon surfaces. J Adhes 61:293–307

    Google Scholar 

  • Chaves IA, Jeffrey R, Melchers RE (2015) Technical note: rust removal from steel coupons after short-term marine immersion. Corrosion 71:811–818

    Google Scholar 

  • Chen GX, Kwee TJ, Tan KP, Choo YS, Hong MH (2010) Laser cleaning of steel for paint removal. Appl Phys A 101:249–253

    ADS  Google Scholar 

  • Dobler V, Oltra R, Boquillon JP, Mosbacher M, Boneberg J, Leiderer P (1999) Surface acceleration during dry laser cleaning of silicon. Appl Phys A 69:S335–S337

    ADS  Google Scholar 

  • Dunbar T, Maynard B, Thomas DA, Peri MDM, Varghese I, Cetinkaya C (2007) Pressure amplification of laser induced plasma shockwaves with shock tubes for nanoparticle removal. J Adhes Sci Technol 21:67–80

    Google Scholar 

  • DuPont A, Caminat P, Bournot P, Gauchon JP (1995) Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface. J Appl Phys 78:2022–2028

    ADS  Google Scholar 

  • Garbacz H, Koss A, Marczak J, Mróz J, Onyszczuk T, Rycyk A, Sarzyński A, Skrzeczanowski W, Strzelec M, Zatorska A (2010) Optimized laser cleaning of metal artworks–evaluation of determinants. Phys Procedia 5:457–466

    ADS  Google Scholar 

  • Grojo D, Cros A, Delaporte P, Sentis M (2007) Experimental investigation of ablation mechanisms involved in dry laser cleaning. Appl Surf Sci 253:8309–8315

    ADS  Google Scholar 

  • Halfpenny DR, Kane DM (1999) A quantitative analysis of single pulse ultraviolet dry laser cleaning. J Appl Phys 86:6641–6646

    ADS  Google Scholar 

  • Head JD, Niedzielski JP (1991) Laser paint stripping. Nasa Sti/recon Technical Report N, 92

    Google Scholar 

  • Heroux JB, Boughaba S, Ressejac I, Sacher E, Meunier M (1996) CO2 laser-assisted removal of submicron particles from solid surfaces. J Appl Phys 79:2857–2862

    ADS  Google Scholar 

  • Imen K, Lee SJ, Allen SD (1991) Laser-assisted micron scale particle removal. Appl Phys Lett 58:203–205

    ADS  Google Scholar 

  • Jang D, Oh JH, Lee JM, Kim D (2009) Enhanced efficiency of laser shock cleaning process by geometrical confinement of laser-induced plasma. J Appl Phys 106:014913

    ADS  Google Scholar 

  • Jang D, Park JG, Kim D (2011) Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning. J Appl Phys 109:073101

    ADS  Google Scholar 

  • Jr Haglund RF, Ermer DR (2000) Explosive vaporization in fused silica initiated by a tunable infrared laser. Appl Surf Sci 168:258–262

    ADS  Google Scholar 

  • Ke L, Zhu H, Lei W, Cheng Z (2009) Laser cleaning of rust on ship steel using TEA CO2 pulsed laser. In: Photonics and Optoelectronics Meetings (POEM) 2009: industry lasers and applications. Proc SPIE 75150G

    Google Scholar 

  • Kim HJ, Kim DJ, Ryu JK, Pak SS (2004) Removal of the photoresist (PR) and metallic-polymer in the concave-typed storage node using the excimer laser. Appl Surf Sci 228:100–109

    ADS  Google Scholar 

  • Lafargue PE, Chaoui N, Millon E, Muller JF, Derule H, Popadenec A (1998) The laser ablation/desorption process used as a new method for cleaning treatment of low carbon steel sheets. Surf Coat Technol 106:268–276

    Google Scholar 

  • Lee JM, Watkins KG, Steen WM (2000) Fuzzy rule based prediction system of surface damage in the laser cleaning process. Int J Adv Manuf Technol 16:649–655

    Google Scholar 

  • Lee SH, Park JG, Lee JM, Cho SH, Cho HK (2003) Si wafer surface cleaning using laser-induced shock wave: a new dry cleaning methodology. Surf Coat Technol 169:178–180

    Google Scholar 

  • Lee WB, Wu JY, Lee YI, Sneddon J (2004) Recent applications of laser-induced breakdown spectrometry: A review of material approaches. Appl Spectrosc Rev 39:27–97

    ADS  Google Scholar 

  • Lee Y, Lu Y, Chan D, Low T, Zhou M (1998) Steam laser cleaning of plasma-etch-induced polymers from via holes. Jpn J Appl Phys 37:2524–2529

    ADS  Google Scholar 

  • Leiderer P, Boneberg J, Mosbacher M, Schilling A, Yavas O (1998) Laser cleaning of silicon surfaces. In: Dubowski JJ, Dyer PE (eds) Laser applications in microelectronic and optoelectronic manufacturing III. SPIE-Int Soc Optical Engineering, Bellingham

    Google Scholar 

  • Lim BC, Hong MH, Kaur A, Shi LP, Chong TC (2006) Laser cleaning of particles with the aid of freezer/chilling plate. J Laser Micro Nanoeng 1:185–189

    Google Scholar 

  • Lim H, Jang D, Kim D, Jin WL, Lee JM (2005) Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process. J Appl Phys 97:054903-054903-6

    ADS  Google Scholar 

  • Lim H, Kim D (2004) Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave. Appl Phys A 79:965–968

    ADS  Google Scholar 

  • Lu YF, Choi WK, Aoyagi Y, Kinomura A, Fujii K (1996) Controllable laser-induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation. J Appl Phys 80:7052–7056

    ADS  Google Scholar 

  • Lu YF, Song WD, Hong MH, Zheng YW, Chong TC (2000) Laser surface cleaning and potential applications in disk drive industry. Tribol Int 33:329–335

    Google Scholar 

  • Lu YF, Song WD, Tee CK, Chan DSH, Low TS (1998) Wavelength effects in the laser cleaning process. Jpn J Appl Phys Part 1 37:840–844

    Google Scholar 

  • Lu YF, Song WD, Ye KD, Hong MH, Liu DM, Chan DSH, Low TS (1997) Removal of submicron particles from nickel-phosphorus surfaces by pulsed laser irradiation. Appl Surf Sci 120:317–322

    ADS  Google Scholar 

  • Luk’yanchuk B (2002) Laser cleaning. World Scientific

    Google Scholar 

  • Luk’yanchuk BS, Wang ZB, Song WD, Hong MH (2005) Erratum to: particle on surface: 3D-effects in dry laser cleaning. Applied Physics A 81:1329–1329

    Google Scholar 

  • Madhukar YK, Mullick S, Shukla DK, Kumar S, Nath AK (2013) Effect of laser operating mode in paint removal with a fiber laser. Appl Surf Sci 264:892–901

    ADS  Google Scholar 

  • Maharja N, Zhou W, Zhou Y, Guan Y (2017) Femtosecond laser cleaning for aerospace manufacturing and remanufacturing. In: Conference on Lasers and Electro-Optics Pacific Rim, pp 1–4

    Google Scholar 

  • Mateo MP, Nicolas G, Pinon V, Alvarez JC, Ramil A, Yanez A (2004) Laser cleaning of prestige tanker oil spill on coastal rocks controlled by spectrochemical analysis. Anal Chim Acta 524:27–32

    Google Scholar 

  • Momma C, Nolte S, Chichkov BN, Vonalvensleben F, Tunnermann A (1997) Precise laser ablation with ultrashort pulses. Appl Surf Sci 109:15–19

    ADS  Google Scholar 

  • Mosbacher M, Chaoui N, Siegel J, Dobler V, Solis J, Boneberg J, Afonso CN, Leiderer P (1999) A comparison of ns and ps steam laser cleaning of Si surfaces. Appl Phys Mater Sci Process 69:S331–S334

    ADS  Google Scholar 

  • Mosbacher M, Dobler V, Boneberg J, Leiderer P (2000) Universal threshold for the steam laser cleaning of submicron spherical particles from silicon. Appl Phys A 70:669–672

    ADS  Google Scholar 

  • Neves P, Arronte M, Vilar R, Rego AMBD (2002) KrF excimer laser dry and steam cleaning of silicon surfaces with metallic particulate contaminants. Appl Phys A 74:191–199

    ADS  Google Scholar 

  • Park HK, Kim D, Grigoropoulos CP, Tam AC (1996a) Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface. J Appl Phys 80:4072–4081

    ADS  Google Scholar 

  • Park HK, Zhang X, Grigoropoulos CP, Poon CC, Tam AC (1996b) Transient temperature during the vaporization of liquid on a pulsed laser-heated solid surface. J Heat Transf 118:702–708

    Google Scholar 

  • Pasquet P, Del Coso R, Boneberg J, Leiderer P, Oltra R, Boquillon JP (1999) Laser cleaning of oxide iron layer: efficiency enhancement due to electrochemical induced absorptivity change. Appl Phys Mater Sci Process 69:S727–S730

    Google Scholar 

  • Paun IA, Selimis A, Bounos G, Georgiou S (2009) Studies on the UV femtosecond ablation of polymers: implications for the femtosecond laser cleaning of painted artworks. In: International Conference on Lasers in Conservation of Artworks. LACONA VIII, Sibiu

    Google Scholar 

  • Phipps C (2007) Laser ablation and its applications. In: International Conference on Pattern Recognition, pp 322–325

    Google Scholar 

  • Rode AV, Baldwin KGH, Wain A, Madsen NR, Freeman D, Delaporte P, Luther-Davies B (2008a) Ultrafast laser ablation for restoration of heritage objects. Appl Surf Sci 254:3137–3146

    ADS  Google Scholar 

  • Rode AV, Freeman D, Baldwin KGH, Wain A, Uteza O, Delaporte P (2008b) Scanning the laser beam for ultrafast pulse laser cleaning of paint. Appl Phys A 93:135–139

    ADS  Google Scholar 

  • Rodrigueznavarro C, Rodrigueznavarro A, Elert K, Sebastian E (2004) Role of marble microstructure in near-infrared laser-induced damage during laser cleaning. J Appl Phys 95:3350–3357

    ADS  Google Scholar 

  • Rusak DA, Castle BC, Smith BW, Winefordner JD (1997) Fundamentals and applications of laser-induced breakdown spectroscopy. Crit Rev Anal Chem 27:257–290

    Google Scholar 

  • Sankin GN, Zhou YF, Zhong P (2008) Focusing of shock waves induced by optical breakdown in water. J Acoust Soc Am 123:4071–4081

    ADS  Google Scholar 

  • Song WD, Hong MH, Lee SH, Lu YF, Chong TC (2003) Real-time monitoring of laser cleaning by an airborne particle counter. Appl Surf Sci 208–209:306–310

    ADS  Google Scholar 

  • Tam AC, Leung WP, Zapka W, Ziemlich W (1992) Laser cleaning techniques for removal of surface particulates. J Appl Phys 71:3515–3523

    ADS  Google Scholar 

  • Tam AC, Park HK, Grigoropoulos CP (1998) Laser cleaning of surface contaminants. Appl Sur Sci 127–129:721–725

    ADS  Google Scholar 

  • Teule R, Scholten H, Van Den Brink OF, Heeren RMA, Zafiropulos V, Hesterman R, Castillejo M, Martin M, Ullenius U, Larsson I, Guerra-Librero F, Silva A, Gouveia H, Albuquerque MB (2003) Controlled UV laser cleaning of painted artworks: a systematic effect study on egg tempera paint samples. J Cult Herit 4:209S–215S

    Google Scholar 

  • Tornari V, Zafiropulos V, Bonarou A, Vainos NA, Fotakis C (2000) Modern technology in artwork conservation: a laser-based approach for process control and evaluation. Opt Lasers Eng 34:309–326

    Google Scholar 

  • Varghese I, Peri MDM, Dunbar T, Maynard B, Thomas DA, Cetinkaya C (2008) Removal of nanoparticles with laser induced plasma. J Adhes Sci Technol 22:651–674

    Google Scholar 

  • Wisse M, Marot L, Eren B, Steiner R, Mathys D, Meyer E (2013) Laser damage thresholds of ITER mirror materials and first results on in situ laser cleaning of stainless steel mirrors. Fusion Eng Des 88:388–399

    Google Scholar 

  • Zafiropulos V, Balas C, Manousaki A, Marakis Y, Maravelaki-Kalaitzaki P, Melesanaki K, Pouli P, Stratoudaki T, Klein S, Hildenhagen J, Dickmann K, Luk’yanchuk BS, Mujat C, Dogariu A (2003) Yellowing effect and discoloration of pigments: experimental and theoretical studies. J Cult Herit 4:249S–256S

    Google Scholar 

  • Zapka W, Ziemlich W, Tam AC (1998) Efficient pulsed laser removal of 0.2 μm sized particles from a solid surface. Appl Phys Lett 58:2217–2219

    ADS  Google Scholar 

  • Zhang C-L, Li X-B, Wang Z-G, Liu C-M, Xiang X, Lv H-B, Yuan X-D, Zu X-T (2011) Laser cleaning techniques for removing surface particulate contaminants on sol-gel SiO2 films. Chin Phys Lett 28:074205

    ADS  Google Scholar 

  • Zhang Z, Zhang J, Wang Y, Liang H, Liu Y, Zhao S, Li X, Lin X (2017) Surface cleaning of hot-rolled sheet steel by laser ablation of oxide layer using a 100-ns high-repetition frequency pulsed laser. Opt Eng 56:1

    Google Scholar 

  • Zhou R, Shengdong L, Ding Y, Yang H, Keng KOY, Hong M (2018) Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1:180014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, R., Hong, M. (2020). Laser Cleaning of Contaminated Substrate Surfaces. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics