Skip to main content

Laser-Induced Processing of Nanoparticles and Growth of Nanowires

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

This chapter presents a review of work on the laser synthesis and functionalization of semiconductor nanowires and nanoparticles in the context of fabricating high-performance electronic devices. Laser-aided sintering of nanoparticles (NPs) is examined. Laser irradiation can access time scales from the continuous to ultrafast and length scales down to submicron, therefore enabling precise control of the induced temperature field. Furthermore, the coupling of the laser energy with the target material is a strong function of the wavelength and is sensitive to the size of the irradiated structure, particularly as the dimensions shrink to the nanoscale range. In this case, one may expect resonant effects allowing efficient radiant energy coupling and processing. Vapor-liquid-solid (VLS) mechanism has been adopted as a bottom-up approach in the synthesis of semiconducting nanowires (NWs). In contrast to blanket heating methods, laser irradiation offers high spatial selectivity and precise control of the heating mechanism in the time domain. These attributes enable elucidation of the fundamental process of nanowire nucleation and early stage of nanostructure growth. Site- and shape-selective on-demand direct integration of oriented NWs is accomplished. Growth of discrete silicon nanowires is reported with nanoscale location selectivity by employing near-field laser illumination in conjunction with highly localized electric fields. Control of the location-selective metal oxide NW growth is accomplished by modulated laser irradiation via an adaptation of hydrothermal growth. Understanding of kinetics of laser hydrothermal growth enabled optimization of efficient growth of various metal oxide NWs, and even heterostructures could be demonstrated on arbitrary substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • An K, Hong S, Han S, Lee H, Yeo J, Ko SH (2014) Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device. ACS Appl Mater Interfaces 6(4):2786–2790. https://doi.org/10.1021/am405323c

    Article  Google Scholar 

  • Andritsos K, Theodorakos I, Zacharatos F, Zergioti I (2020) The effect of electromigration on the lifetime and performance of flexible interconnections fabricated by laser printing and sintering. Appl Surf Sci 506:144968

    Article  Google Scholar 

  • Arcidiacono S, Bieri N, Poulikakos D, Grigoropoulos C (2004) On the coalescence of gold nanoparticles. Int J Multiphase Flow 30(7–8):979–994

    Article  MATH  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2011) Nanostructured materials for advanced energy conversion and storage devices. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific, Hackensack, pp 148–159

    Google Scholar 

  • Bäuerle DW (2011) Laser processing and chemistry. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Birkelund K, Thomsen EV, Rasmussen JP, Hansen O, Tang PT, Moller P, Grey F (1997) New approaches to atomic force microscope lithography on silicon. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 15(6):2912–2915

    Article  ADS  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287

    Article  ADS  Google Scholar 

  • Cao L, Barsic DN, Guichard AR, Brongersma ML (2007) Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett 7(11):3523–3527

    Article  ADS  Google Scholar 

  • Cao Y-Y, Takeyasu N, Tanaka T, Duan X-M, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5(10):1144–1148. https://doi.org/10.1002/smll.200801179

    Article  Google Scholar 

  • Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31

    Article  ADS  Google Scholar 

  • Chung J, Ko S, Bieri NR, Grigoropoulos CP, Poulikakos D (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl Phys Lett 84(5):801–803

    Article  ADS  Google Scholar 

  • Coombes C (1972) The melting of small particles of lead and indium. J Phys F 2(3):441

    Article  ADS  Google Scholar 

  • de Vries AJ, Kooij ES, Wormeester H, Mewe AA, Poelsema B (2007) Ellipsometric study of percolation in electroless deposited silver films. J Appl Phys 101(5):053703

    Article  ADS  Google Scholar 

  • Dean RN, Nordine PC, Christodoulou CG (1999) Novel method for fabricating 3D helical THz antennas directly on semiconductor substrates, vol 3617. Optoelectronics ‘99 – integrated optoelectronic devices. SPIE

    Google Scholar 

  • Duty C, Jean D, Lackey WJ (2001) Laser chemical vapour deposition: materials, modelling, and process control. Int Mater Rev 46(6):271–287. https://doi.org/10.1179/095066001771048727

    Article  Google Scholar 

  • Fox M (2001) Optical properties of solids, Oxford master series in condensed matter physics. Oxford University Press, New York, p 305

    Google Scholar 

  • Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Greyson Christoforo M, Cui Y, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241. https://doi.org/10.1038/nmat3238. https://www.nature.com/articles/nmat3238#supplementary-information

    Article  ADS  Google Scholar 

  • Grigoropoulos CP (2009) Transport in laser microfabrication: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee SS, Yang M-Y, Ko SH (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26(33):5808–5814. https://doi.org/10.1002/adma.201400474

    Article  Google Scholar 

  • Han S, Hong S, Yeo J, Kim D, Kang B, Yang M-Y, Ko SH (2015) Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater 27(41):6397–6403. https://doi.org/10.1002/adma.201503244

    Article  Google Scholar 

  • He G-C, Zheng M-L, Dong X-Z, Jin F, Liu J, Duan X-M, Zhao Z-S (2017) The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet. Sci Rep 7:41757

    Article  ADS  Google Scholar 

  • Heavens OS (1991) Optical properties of thin solid films. Courier Corporation, Dover Publications, New York

    Google Scholar 

  • Hirt L, Reiser A, Spolenak R, Zambelli T (2017) Additive manufacturing of metal structures at the micrometer scale. Adv Mater 29(17):1604211. https://doi.org/10.1002/adma.201604211

    Article  Google Scholar 

  • Hong S, Yeo J, Manorotkul W, Kang HW, Lee J, Han S, Rho Y, Suh YD, Sung HJ, Ko SH (2013) Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale 5(9):3698–3703. https://doi.org/10.1039/C3NR34346D

    Article  ADS  Google Scholar 

  • Hsu YF, Xi YY, Tam KH, Djurišić AB, Luo J, Ling CC, Cheung CK, Ng AMC, Chan WK, Deng X (2008) Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv Funct Mater 18(7):1020–1030

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001a) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  ADS  Google Scholar 

  • Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001b) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13(2):113–116

    Article  Google Scholar 

  • Hung WH, Hsu I-K, Bushmaker A, Kumar R, Theiss J, Cronin SB (2008) Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition. Nano Lett 8(10):3278–3282

    Article  ADS  Google Scholar 

  • Hwang DJ, Ryu S-G, Grigoropoulos CP (2011a) Multi-parametric growth of silicon nanowires in a single platform by laser-induced localized heat sources. Nanotechnology 22(38):385303

    Article  Google Scholar 

  • Hwang DJ, S-g R, Kim E, Grigoropoulos CP, Carraro C (2011b) On demand-direct synthesis of Si and Ge nanowires on a single platform by focused laser illumination. Appl Phys Lett 99(12):123109

    Article  ADS  Google Scholar 

  • In JB, Kwon HJ, Lee D, Ko SH, Grigoropoulos CP (2014) In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics. Small 10(4):741–749

    Article  Google Scholar 

  • Ishikawa A, Tanaka T, Kawata S (2006) Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl Phys Lett 89(11):113102. https://doi.org/10.1063/1.2345601

    Article  ADS  Google Scholar 

  • Jang WS, Lee TI, Oh JY, Hwang SH, Shon SW, Kim DH, Xia Y, Myoung JM, Baik HK (2012) Kinetically controlled way to create highly uniform mono-dispersed ZnO sub-microrods for electronics. J Mater Chem 22(38):20719–20727

    Article  Google Scholar 

  • Joo J, Chow BY, Prakash M, Boyden ES, Jacobson JM (2011) Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater 10:596. https://doi.org/10.1038/nmat3069. https://www.nature.com/articles/nmat3069#supplementary-information

    Article  ADS  Google Scholar 

  • Kang B, Han S, Kim J, Ko S, Yang M (2011) One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J Phys Chem C 115(48):23664–23670. https://doi.org/10.1021/jp205281a

    Article  Google Scholar 

  • Kempa TJ, Tian B, Kim DR, Hu J, Zheng X, Lieber CM (2008) Single and tandem axial pin nanowire photovoltaic devices. Nano Lett 8(10):3456–3460

    Article  ADS  Google Scholar 

  • Kikkawa J, Ohno Y, Takeda S (2005) Growth rate of silicon nanowires. Appl Phys Lett 86(12):123109

    Article  ADS  Google Scholar 

  • Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JM, Poulikakos D (2007a) Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl Phys Lett 90(14):141103

    Article  ADS  Google Scholar 

  • Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JM, Poulikakos D (2007b) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18(34):345202

    Article  Google Scholar 

  • Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett 11(2):666–671

    Article  ADS  Google Scholar 

  • Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson J, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303(1-2):231–246

    Article  ADS  Google Scholar 

  • Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8(28):3349–3357

    Article  Google Scholar 

  • Kotecki DE, Herman IP (1988) A real time Monte Carlo simulation of thin film nucleation in localized-laser chemical vapor deposition. J Appl Phys 64(10):4920–4942

    Article  ADS  Google Scholar 

  • Kruth J-P, Levy G, Klocke F, Childs T (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann 56(2):730–759

    Article  Google Scholar 

  • Kwon J, Cho H, Eom H, Lee H, Suh YD, Moon H, Shin J, Hong S, Ko SH (2016) Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Appl Mater Interfaces 8(18):11575–11582

    Article  Google Scholar 

  • Lao CS, Park M-C, Kuang Q, Deng Y, Sood AK, Polla DL, Wang ZL (2007) Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J Am Chem Soc 129(40):12096–12097

    Article  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455

    Article  ADS  Google Scholar 

  • Lee M-T, Lee D, Sherry A, Grigoropoulos CP (2011) Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write. J Micromech Microeng 21(9):095018

    Article  Google Scholar 

  • Lee D, Pan H, Ko SH, Park HK, Kim E, Grigoropoulos CP (2012a) Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles. Appl Phys A 107(1):161–171

    Article  ADS  Google Scholar 

  • Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012b) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24(25):3326–3332. https://doi.org/10.1002/adma.201200359

    Article  Google Scholar 

  • Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim T-S, Lee D, Ko SH (2013) Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater 23(34):4171–4176. https://doi.org/10.1002/adfm.201203802

    Article  Google Scholar 

  • Lee D, Paeng D, Park HK, Grigoropoulos CP (2014) Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS Nano 8(10):9807–9814

    Article  Google Scholar 

  • Lee H, Hong S, Kwon J, Suh YD, Lee J, Moon H, Yeo J, Ko SH (2015) All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. J Mater Chem A 3(16):8339–8345. https://doi.org/10.1039/C4TA07120D

    Article  Google Scholar 

  • Leggett GJ (2011) Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research. ACS Nano 5(3):1575–1579. https://doi.org/10.1021/nn2006442

    Article  Google Scholar 

  • Luk‘yanchuk BS, Arnold N, Huang SM, Wang ZB, Hong MH (2003) Three-dimensional effects in dry laser cleaning. Appl Phys A 77(2):209–215. https://doi.org/10.1007/s00339-003-2139-z

    Article  ADS  Google Scholar 

  • Mahajan B, Yu X, Shou W, Pan H, Huang X (2017) Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small 13(17):1700065

    Article  Google Scholar 

  • Mincuzzi G, Schulz-Ruhtenberg M, Vesce L, Reale A, Di Carlo A, Gillner A, Brown TM (2014) Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation. Prog Photovolt Res Appl 22(3):308–317. https://doi.org/10.1002/pip.2261

    Article  Google Scholar 

  • Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211

    Article  ADS  Google Scholar 

  • Nam W, Mitchell JI, Xu X (2016) Laser direct writing of modulation-doped nanowire p/n junctions. Nanotechnology 27(48):485205

    Article  Google Scholar 

  • Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  ADS  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819

    Article  Google Scholar 

  • Olson TY, Chernov AA, Drabek BA, Satcher JH, Han TY-J (2013) Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays. Chem Mater 25(8):1363–1371. https://doi.org/10.1021/cm300679x

    Article  Google Scholar 

  • Paeng D, Lee D, Yeo J, Yoo J-H, Allen FI, Kim E, So H, Park HK, Minor AM, Grigoropoulos CP (2015a) Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions. J Phys Chem C 119(11):6363–6372

    Article  Google Scholar 

  • Paeng D, Yeo J, Lee D, Moon S-J, Grigoropoulos CP (2015b) Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl Phys A 120(4):1229–1240

    Article  ADS  Google Scholar 

  • Pan H, Ko S, Grigoropoulos C (2008a) The coalescence of supported gold nanoparticles induced by nanosecond laser irradiation. Appl Phys A 90(2):247–253

    Article  ADS  Google Scholar 

  • Pan H, Ko SH, Grigoropoulos CP (2008b) The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study. J Heat Transf 130(9):092404

    Article  Google Scholar 

  • Pan H, Ko SH, Misra N, Grigoropoulos CP (2009a) Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics. Appl Phys Lett 94(7):071117

    Article  ADS  Google Scholar 

  • Pan H, Misra N, Ko SH, Grigoropoulos CP, Miller N, Haller EE, Dubon O (2009b) Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication. Appl Phys A 94(1):111–115

    Article  ADS  Google Scholar 

  • Pan H, Hwang DJ, Ko SH, Clem TA, Fréchet JM, Bäuerle D, Grigoropoulos CP (2010) High-throughput near-field optical nanoprocessing of solution-deposited nanoparticles. Small 6(16):1812–1821

    Article  Google Scholar 

  • Pan H, Lee D, Ko SH, Grigoropoulos CP, Park HK, Hoult T (2011) Fiber laser annealing of indium-tin-oxide nanoparticles for large area transparent conductive layers and optical film characterization. Appl Phys A 104(1):29–38

    Article  ADS  Google Scholar 

  • Park T, Kim D (2015) Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates. Thin Solid Films 578:76–82

    Article  ADS  Google Scholar 

  • Park T, Kim D (2016) Laser plasma sintering for fabricating indium tin oxide thin films. Thin Solid Films 615:177–182

    Article  ADS  Google Scholar 

  • Pauzauskie PJ, Yang P (2006) Nanowire photonics. Mater Today 9(10):36–45

    Article  Google Scholar 

  • Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J (2006) Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5(2):97

    Article  ADS  Google Scholar 

  • Piqué A, Auyeung RCY, Kim H, Charipar NA, Mathews SA (2016) Laser 3D micro-manufacturing. J Phys D Appl Phys 49(22):223001. https://doi.org/10.1088/0022-3727/49/22/223001

    Article  ADS  Google Scholar 

  • Qing Q, Pal SK, Tian B, Duan X, Timko BP, Cohen-Karni T, Murthy VN, Lieber CM (2010) Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci 107(5):1882

    Article  ADS  Google Scholar 

  • Rho Y, Kang K-T, Lee D (2016) Highly crystalline Ni/NiO hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions. Nanoscale 8(16):8976–8985. https://doi.org/10.1039/C6NR00708B

    Article  ADS  Google Scholar 

  • Ryu S-G, Kim E, Yoo J-H, Hwang DJ, Xiang B, Dubon OD, Minor AM, Grigoropoulos CP (2013) On demand shape-selective integration of individual vertical germanium nanowires on a Si (111) substrate via laser-localized heating. ACS Nano 7(3):2090–2098

    Article  Google Scholar 

  • Ryu S-G, Hwang DJ, Kim E, Grigoropoulos CP (2014) Tip-based nanoscale selective growth of discrete silicon nanowires by near-field laser illumination. Appl Phys A 116(1):51–58

    Article  ADS  Google Scholar 

  • Ryu S-G, Kim E, Hwang DJ, Grigoropoulos CP (2015) Selective and directed growth of silicon nanowires by tip-enhanced local electric field. Appl Phys A Mater Sci Process 121(1):255–260

    Article  ADS  Google Scholar 

  • Ryu S-G, Kim E, Allen FI, Hwang DJ, Minor AM, Grigoropoulos CP (2016) Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating. Appl Phys Lett 109(7):073106

    Article  ADS  Google Scholar 

  • Schierning G, Stoetzel J, Chavez R, Kessler V, Hall J, Schmechel R, Schneider T, Petermann N, Wiggers H, Angst S (2016) Silicon-based nanocomposites for thermoelectric application. Phys Status Solidi A 213(3):497–514

    Article  ADS  Google Scholar 

  • Shin J, Jeong B, Kim J, Nam VB, Yoon Y, Jung J, Hong S, Lee H, Eon H, Yeo J, Choi J, Lee D, Ko SH (2020) Wearable temperature sensors: sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater. https://doi.org/10.1002/adma.202070014

  • Shou W, Mahajan BK, Ludwig B, Yu XW, Staggs J, Huang X, Pann H (2017) Low-cost manufacturing of bioresorbable conductors by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticles. Adv Mater 29:170072

    Google Scholar 

  • Skylar-Scott MA, Gunasekaran S, Lewis JA (2016) Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci 113(22):6137–6142. https://doi.org/10.1073/pnas.1525131113

    Article  ADS  Google Scholar 

  • Son Y, Yeo J, Moon H, Lim TW, Hong S, Nam KH, Yoo S, Grigoropoulos CP, Yang DY, Ko SH (2011) Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater 23(28):3176–3181

    Article  Google Scholar 

  • Swanwick ME, Pfaendler SML, Akinwande AI, Flewitt AJ (2012) Near-ultraviolet zinc oxide nanowire sensor using low temperature hydrothermal growth. Nanotechnology 23(34):344009. https://doi.org/10.1088/0957-4484/23/34/344009

    Article  Google Scholar 

  • Takai T, Nakao H, Iwata F (2014) Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt Express 22(23):28109–28117. https://doi.org/10.1364/OE.22.028109

    Article  ADS  Google Scholar 

  • Theodorakos I, Zacharatos F, Geremia R, Karnakis D, Zergioti I (2015) Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl Surf Sci 336:157–162

    Article  ADS  Google Scholar 

  • Visser CW, Pohl R, Sun C, Römer G-W, Huis in ‘t Veld B, Lohse D (2015) Toward 3D printing of pure metals by laser-induced forward transfer. Adv Mater 27(27):4087–4092. https://doi.org/10.1002/adma.201501058

    Article  Google Scholar 

  • Wagner R, Ellis W (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Article  ADS  Google Scholar 

  • Wang ZL (2012) From nanogenerators to piezotronics – a decade-long study of ZnO nanostructures. MRS Bull 37(9):814–827

    Article  Google Scholar 

  • Wang J, Auyeung RCY, Kim H, Charipar NA, Piqué A (2010) Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Adv Mater 22(40):4462–4466. https://doi.org/10.1002/adma.201001729

    Article  Google Scholar 

  • Wanke MC, Lehmann O, Müller K, Wen Q, Stuke M (1997) Laser rapid prototyping of photonic band-gap microstructures. Science 275(5304):1284–1286. https://doi.org/10.1126/science.275.5304.1284

    Article  Google Scholar 

  • Wormeester H, Henry A-I, Kooij ES, Poelsema B, Pileni M-P (2006) Ellipsometric identification of collective optical properties of silver nanocrystal arrays. J Chem Phys 124(20):204713

    Article  ADS  Google Scholar 

  • Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098

    Article  Google Scholar 

  • Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3(10):569

    Article  ADS  Google Scholar 

  • Yeo J, Hong S, Lee D, Hotz N, Lee M-T, Grigoropoulos CP, Ko SH (2012) Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics. PLoS One 7(8):e42315

    Article  ADS  Google Scholar 

  • Yeo J, Hong S, Wanit M, Kang HW, Lee D, Grigoropoulos CP, Sung HJ, Ko SH (2013) Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv Funct Mater 23(26):3316–3323

    Article  Google Scholar 

  • Yeo J, Hong S, Manorotkul W, Suh YD, Lee J, Kwon J, Ko SH (2014a) Digital 3D local growth of iron oxide micro- and nanorods by laser-induced photothermal chemical liquid growth. J Phys Chem C 118(28):15448–15454. https://doi.org/10.1021/jp501642j

    Article  Google Scholar 

  • Yeo J, Kim G, Hong S, Kim MS, Kim D, Lee J, Lee HB, Kwon J, Suh YD, Kang HW, Sung HJ, Choi J-H, Hong W-H, Ko JM, Lee S-H, Choa S-H, Ko SH (2014b) Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. J Power Sources 246:562–568. https://doi.org/10.1016/j.jpowsour.2013.08.012

    Article  Google Scholar 

  • Yeo J, Hong S, Kim G, Lee H, Suh YD, Park I, Grigoropoulos CP, Ko SH (2015) Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6):6059–6068. https://doi.org/10.1021/acsnano.5b01125

    Article  Google Scholar 

  • Zacharatos F, Karvounis P, Theodorakos I, Hatziapostolou A, Zergioti I (2018) Single step laser transfer and laser curing of Ag nanowires: a digital process for the fabrication of flexible and transparent microelectrodes. Materials 11:1036. https://doi.org/10.3390/ma11061036

    Article  ADS  Google Scholar 

  • Zhao W, Rovere T, Weerawarne D, Osterhoudt G, Kang N, Joseph P, Luo J, Shim B, Poliks M, Zhong C-J (2015) Nanoalloy printed and pulse-laser sintered flexible sensor devices with enhanced stability and materials compatibility. ACS Nano 9(6):6168–6177

    Article  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294

    Article  Google Scholar 

Download references

Acknowledgments

The research done by C.G. and his co-workers at the Laser Thermal Laboratory of UC Berkeley was supported by the DARPA/MTO, the US Department of Energy, and the US National Science Foundation. The laser-induced nanowire growth and doping was conducted on the LACVD apparatus in the UC Berkeley Marvell Nanofabrication Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rho, Y., Grigoropoulos, C.P. (2020). Laser-Induced Processing of Nanoparticles and Growth of Nanowires. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics