Skip to main content

Trauma Products: Spinal Cord Injury Implants

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

The incidence of acute traumatic spinal cord injury (SCI) in the USA is approximately 27–81 cases per million people per year with cervical SCI being the most common site of injury. Despite early surgical decompression, secondary injury and the cascade of effects in the ensuing days and months remain one of the biggest barriers in achieving recovery in these patients. A host of pharmacologic, cellular, immunomodulatory, and rehabilitative interventions have been employed over the past several decades in an attempt to improve functional outcome in this population. Though no single intervention is likely to provide a cure, important information has been gained about the heterogeneity of this population and the myriad physiological processes underlying the acute and chronic phases of injury. Herein, we provide a broad overview of the underlying pathophysiology, discuss various cellular, structural, and pharmacologic therapies tested, and address the challenges and insights gained from completed SCI trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Angeli CA et al (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain J Neurol 137(5):1394–1409

    Google Scholar 

  • Ahuja CS, Nori S et al (2017a) Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80(3S):S9–S22

    PubMed  Google Scholar 

  • Ahuja CS, Wilson JR et al (2017b) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018

    PubMed  Google Scholar 

  • Ajiboye AB et al (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389(10081):1821–1830. Available at. https://doi.org/10.1016/s0140-6736(17)30601-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Altaf F et al (2017) The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord 55:33–38

    CAS  PubMed  Google Scholar 

  • Anderson KD et al (2017) Safety of autologous human Schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 34(21):2950–2963

    PubMed  Google Scholar 

  • Anon (n.d.) InVivo therapeutics announces presentation of twelve-month results from the INSPIRE Study of the Investigational Neuro-Spinal Scaffold™ in Acute Thoracic Complete Spinal Cord Injury – InVivo therapeutics. Available at: https://www.invivotherapeutics.com/press-releases/invivo-therapeutics-announces-presentation-of-twelve-month-results-from-the-inspire-study-of-the-investigational-neuro-spinal-scaffold-in-acute-thoracic-complete-spinal-cord-injury/. Accessed 17 May 2019

  • Assinck P et al (2017) Cell transplantation therapy for spinal cord injury. Nat Neurosci 20(5):637–647

    CAS  PubMed  Google Scholar 

  • Badhiwala JH, Ahuja CS, Fehlings MG (2018) Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 30(1):1–18

    PubMed  Google Scholar 

  • Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47

    CAS  PubMed  Google Scholar 

  • Blight AR et al (2019) The challenge of recruitment for neurotherapeutic clinical trials in spinal cord injury. Spinal Cord 57(5):348–359

    PubMed  Google Scholar 

  • Bouton CE et al (2016) Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602):247–250. Available at. https://doi.org/10.1038/nature17435

    Article  CAS  PubMed  Google Scholar 

  • Bracken MB et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. NEJM 322(20):1405–1411

    CAS  PubMed  Google Scholar 

  • Bracken MB et al (1997) Administration of methylprednisolone for 24 or 48 hours or Tirilazad Mesylate for 48 hours in the treatment of acute spinal cord injury. JAMA 277(20):1597–1604

    CAS  PubMed  Google Scholar 

  • Branco F, Cardenas DD, Svircev JN (2007) Spinal cord injury: a comprehensive review. Phys Med Rehabil Clin N Am 18(4):651–679. v

    PubMed  Google Scholar 

  • Burke JF et al (2018) Ultra-early (<12 hours) surgery correlates with higher rate of American spinal injury association impairment scale conversion after cervical spinal cord injury. Neurosurgery 0(0):1–5

    Google Scholar 

  • Chen Y, He Y, DeVivo MJ (2016) Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972–2014. Arch Phys Med Rehabil 97(10):1610–1619

    PubMed  Google Scholar 

  • Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273(5274):510–513

    CAS  PubMed  Google Scholar 

  • Cheng H et al (2004) Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine 29(14):E284–E288

    PubMed  Google Scholar 

  • Derakhshanrad N et al (2018) Granulocyte-colony stimulating factor administration for neurological improvement in patients with postrehabilitation chronic incomplete traumatic spinal cord injuries: a double-blind randomized controlled clinical trial. J Neurosurg Spine 29(1):97–107

    PubMed  Google Scholar 

  • Dietz V (2009) Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull 78(1):I–VI

    CAS  PubMed  Google Scholar 

  • Dietz V (2012) Clinical aspects for the application of robotics in Neurorehabilitation. In: Dietz V, Nef T, Rymer WZ (eds) Neurorehabilitation technology. Springer, London, pp 291–301

    Google Scholar 

  • Dietz V, Fouad K (2014) Restoration of sensorimotor functions after spinal cord injury. Brain J Neurol 137. (Pt 3:654–667

    Google Scholar 

  • Dlouhy BJ et al (2014) Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient. J Neurosurg Spine 21(4):618–622. Available at. https://doi.org/10.3171/2014.5.spine13992

    Article  PubMed  Google Scholar 

  • Donavan J, Kirschblum S (2018) Clinical trials in traumatic spinal cord injury. Neurotherapeutics 15:654–668. https://doi.org/10.1007/s13311-018-0632-5

    Article  Google Scholar 

  • Eckert MJ, Martin MJ (2017) Trauma: spinal cord injury. Surg Clin North Am 97(5):1031–1045

    PubMed  Google Scholar 

  • Fehlings MG et al (2011) A phase I/IIa clinical trial of a recombinant rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796

    PubMed  Google Scholar 

  • Fehlings MG et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS). PlosOne 7:2

    Google Scholar 

  • Fehlings MG et al (2018) Rho inhibitor VX-210 in acute traumatic subaxial cervical spinal cord injury: design of the SPinal cord injury rho INhibition InvestiGation (SPRING) clinical trial. J Neurotrauma 35(9):1049–1056

    PubMed  PubMed Central  Google Scholar 

  • Furlan GC, Fehlings MG (2008) Cardiovascular complications after acute spinal cord injury:pathophysiology, diagnosis, and management. Neurosurg Focus 25(5):1–15

    Google Scholar 

  • Grahn PJ et al (2017) Enabling task-specific volitional motor functions via spinal cord Neuromodulation in a human with paraplegia. Mayo Clin Proc 92(4):544–554. Available at. https://doi.org/10.1016/j.mayocp.2017.02.014

    Article  PubMed  Google Scholar 

  • Grassner L et al (2016) Early decompression (<8 h) after traumatic cervical spinal cord injury improves functinoal outcome as assessed by spinal cord independence measure after one year. J Neurotrauma 33(18):1658–1666

    PubMed  Google Scholar 

  • Gunduz A et al (2017) Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Regen Res 12(12):1933–1938

    Google Scholar 

  • Hawryluk GWJ et al (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25(5):1–16

    Google Scholar 

  • Hochberg LR et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Google Scholar 

  • Hong J, Rodgers CE, Fehlings MG (2018) Stem cell applications in spinal cord injury: a primer. Stem Cell Genetics Biomed Res:43–72. Available at. https://doi.org/10.1007/978-3-319-90695-9_4

  • James ND et al (2018) Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol 17(10):905–917

    PubMed  Google Scholar 

  • Jin MC et al (2019) Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus 46(3):E10

    PubMed  Google Scholar 

  • Krause JS et al (1997) Mortality after spinal cord injury: an 11-year prospective study. Arch Phys Med Rehabil 78(8):815–821

    CAS  PubMed  Google Scholar 

  • Kucher K et al (2018) First-in-man Intrathecal application of Neurite growth-promoting anti-Nogo-a antibodies in acute spinal cord injury. Neurorehabil Neural Repair 32(6–7):578–589

    PubMed  Google Scholar 

  • Kwon BK et al (2009a) Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine 10:181–193

    PubMed  Google Scholar 

  • Kwon BK et al (2009b) Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotr 26(8):1379–1393. https://doi.org/10.1089/neu.2009.0884

  • Kim S-P et al (2008) Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Engin 5(4):455–476

    Google Scholar 

  • Kitamura K et al (2011) Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PloS one 6(11):e27706

    Google Scholar 

  • Koda M et al (2007) Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 1149:223–231

    Google Scholar 

  • Lee B, Liu CY, Apuzzo MLJ (2013) A prime ron brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 79(3-4):457–471

    Google Scholar 

  • Lehrer N (1996) Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. Neurol Rep 20(1):65

    Google Scholar 

  • Liu S, Xie Y-Y, Wang B (2019) Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 14(8):1352–1363

    PubMed  PubMed Central  Google Scholar 

  • Lu DC et al (2016) Engaging cervical spinal cord networks to Reenable volitional control of hand function in Tetraplegic patients. Neurorehabil Neural Repair 30(10):951–962

    PubMed  PubMed Central  Google Scholar 

  • Lukovic D et al (2014) Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron’s clinical trial for spinal cord injury. Stem Cells Dev 23(1):1–4. Available at. https://doi.org/10.1089/scd.2013.0266

    Article  PubMed  Google Scholar 

  • Marino RJ et al (2011) Upper- and lower-extremity motor recovery after traumatic cervical spinal cord injury: an update from the national spinal cord injury database. Arch Phys Med Rehabil 92(3):369–375

    PubMed  Google Scholar 

  • May M (2019) Clinical trial costs go under the microscope. Nat Med. Available at. https://doi.org/10.1038/d41591-019-00008-7

  • National Spinal Cord Injury Statistical Center, Updated 2018. Spinal cord injury: facts and figures at a glance. Available at: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%20-%202018.pdf. Accessed 1 May 2019

  • Nori S, Ahuja CS, Fehlings MG (2017) Translational advances in the management of acute spinal cord Injury: what is new? what is hot?. Neurosurg 64(CN_suppl_1):119–128

    Google Scholar 

  • Popovic MR, Zivanovic V, Valiante TA (2016) Restoration of upper limb function in an individual with cervical Spondylotic myelopathy using functional electrical stimulation therapy: a case study. Front Neurol 7. Available at. https://doi.org/10.3389/fneur.2016.00081

  • Priest CA et al (2015) Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 10(8):939–958

    CAS  PubMed  Google Scholar 

  • Park HC et al (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Engineer 11(5-6):913–922

    Google Scholar 

  • Putatunda R, Bethea JR, Hu W-H (2018) Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol = Zhonghua chuang shang za zhi/Chinese Medical Association 21(3):125–136

    Google Scholar 

  • Rejc E et al (2017) Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci Rep 7:1. https://doi.org/10.1038/s41598-017-14003-w

    Article  Google Scholar 

  • Roberts TT, Leonard GR, Cepela DJ (2017) Classifications in brief: American spinal injury association (ASIA) impairment scale. Clin Orthop Relat Res 475(5):1499–1504

    PubMed  Google Scholar 

  • Rosenfeld JV et al (2008) The ethics of the treatment of spinal cord injury: stem cell transplants, motor Neuroprosthetics, and social equity. Topics Spinal Cord Injury Rehabil 14(1):76–88

    Google Scholar 

  • Schönherr MC et al (1999) Functional outcome of patients with spinal cord injury: rehabilitation outcome study. Clin Rehabil 13(6):457–463

    PubMed  Google Scholar 

  • Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53–60

    CAS  PubMed  Google Scholar 

  • Siddiqui AM, Khazaei M, Fehlings MG (2015) Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res 218:15–54

    Google Scholar 

  • Shultz RV, Zhong Y (2017) Minocycline tarets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 12(5):702–713

    Google Scholar 

  • Tator CH (2006) Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59(5):957–987

    PubMed  Google Scholar 

  • Theodore N et al (2016) First human implantation of a Bioresorbable polymer scaffold for acute traumatic spinal cord injury: a clinical pilot study for safety and feasibility. Neurosurgery 79(2):E305–E312

    PubMed  Google Scholar 

  • Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22. Available at. https://doi.org/10.1016/j.stem.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  • Tsuji O et al (2019) Concise review: laying the groundwork for a first-in-human study of an induced pluripotent stem cell-based intervention for spinal cord injury. Stem Cells 37(1):6–13

    PubMed  Google Scholar 

  • Venkatesh K et al (2019) Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res. Available at 377:125. https://doi.org/10.1007/s00441-019-03039-1

    Article  PubMed  Google Scholar 

  • Vaccaro AR et al (1997) Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine 22(22):2609–2613

    Google Scholar 

  • Walters BC et al (2013) Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Clin Neurosurg 60:82–91

    Google Scholar 

  • Warita H et al (2019) Safety, tolerability, and pharmacodynamics of Intrathecal injection of recombinant human HGF (KP-100) in subjects with amyotrophic lateral sclerosis: a phase I trial. J Clin Pharmacol 59(5):677–687

    CAS  PubMed  Google Scholar 

  • Waters RL et al (1992) Recovery following complete paraplegia. Arch Phys Med Rehabil 73(9):784–789

    CAS  PubMed  Google Scholar 

  • Waters RL et al (1993) Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil 74(3):242–247

    CAS  PubMed  Google Scholar 

  • Welch RD et al (1986) Functional independence in quadriplegia: critical levels. Arch Phys Med Rehabil 67(4):235–240

    CAS  PubMed  Google Scholar 

  • West CR, Mills P, Krassioukov AV (2012) Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord 50(7):484–492

    CAS  PubMed  Google Scholar 

  • Wilson JR, Cadotte DW, Fehlings MG (2012) Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: a systematic review. J Neurosurg Spine 17(1 Suppl):11–26

    PubMed  Google Scholar 

  • Winslow C, Rozovsky J (2003) Effect of spinal cord injury on the respiratory system. Am J Phys Med Rehabil/Assoc Acad Physiatrists 82(10):803–814

    Google Scholar 

  • Wu J-C et al (2008) Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary phase I clinical study. J Neurosurg Spine 8(3):208–214

    PubMed  Google Scholar 

  • Wu J-C et al (2011) Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg Spine 15(3):216–227

    PubMed  Google Scholar 

  • Zareen N et al (2017) Motor cortex and spinal cord neuromodulatino promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Experiment Neurol 297:179–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Cadena Jr. .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cadena, G., Xu, J., Zhang, A. (2020). Trauma Products: Spinal Cord Injury Implants. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics