Skip to main content

Dielectric Elastomers as EAPs: Applications

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

The unique advantages of dielectric elastomers have stimulated a great number of applications which can be categorized into actuators, energy harvesters, and sensors. This chapter presents multiple electromechanical transduction systems including biologically inspired robotics, tactile feedback and displays, tunable optics, fluid control and microfluidics, capacitive sensors, and energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari S, Shea H (2012) Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells. J Micromech Microeng 22(4):045020

    Article  Google Scholar 

  • Anderson I, Gisby T, McKay T et al (2012) Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys 112(4):041101

    Article  Google Scholar 

  • Araromi O, Gavrilovich I, Shintake J et al (2015) Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20(1):438–446

    Article  Google Scholar 

  • Benslimane M, Gravensen P, Sommer-Larsen P (2002) Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes. Proc SPIE 4695:150–157

    Article  Google Scholar 

  • Biggs J, Srinivasan M (2002a) Haptic interfaces. In: Hale K, Stanney K (eds) Handbook of virtual environments. Lawrence Erlbaum Associates, London, pp 93–116

    Google Scholar 

  • Biggs J, Srinivasan M (2002b) Tangential versus normal displacements of skin: relative effectiveness for producing tactile sensations. In: Proceedings of 10th symposium on haptic interfaces virtual environ teleoperator systems HAPTICS, Orlando, pp 121–128

    Google Scholar 

  • Böse H, Fuß E (2014) Novel dielectric elastomer sensors for compression load detection. Proc SPIE 9056:905614

    Article  Google Scholar 

  • Brochu P (2012) Dielectric elastomers for actuation and energy harvesting. University of California, Los Angeles

    Google Scholar 

  • Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31(1):325–329

    Article  Google Scholar 

  • Carpi F, Frediani G, De Rossi D (2010) Hydrostatically coupled dielectric elastomer actuators. IEEE/ASME Trans Mechatron 15(2):308–315

    Article  Google Scholar 

  • Carpi F, Frediani G, De Rossi D (2011a) Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces. Proc SPIE 7976:797618

    Article  Google Scholar 

  • Carpi F, Frediani G, Turco S et al (2011b) Bioinspired tuneable lens with muscle like electroactive elastomers. Adv Funct Mater 21(21):4152–4158

    Article  Google Scholar 

  • Chakraborti P, Toprakci H, Yang P et al (2012) A compact dielectric elastomer tubular actuator for refreshable Braille displays. Sensors Actuators A Phys 179:151–157

    Article  Google Scholar 

  • Chen B, Lu J, Yang C et al (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces 6(10):7840–7845

    Article  Google Scholar 

  • Chiba S, Waki M, Kornbluh R et al (2008) Innovative power generators for energy harvesting using electroactive polymer artificial muscles. Proc SPIE 6927:692715

    Article  Google Scholar 

  • Chiba S, Waki M, Kornbluh R et al (2011) Current status and future prospects of power generators using dielectric elastomers. Smart Mater Struct 20(12):124006

    Article  Google Scholar 

  • Choi H, Kim D, Vuong N et al (2009) Development of integrated tactile display devices. Proc SPIE 7287:72871C

    Article  Google Scholar 

  • Czech B, van Kessel R, Bauer P et al (2010) Energy harvesting using dielectric elastomers. In: Proceedings of 14th international power electron motion control conference EPE-PEMC, Ohrid, S4, pp 18–23

    Google Scholar 

  • Eckerle J, Stanford S, Marlow J et al (2001) A biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles. Proc SPIE 4332:269–280

    Article  Google Scholar 

  • Gebbers P, Grätzel C, Maffli L et al (2012) Zipping it up: DEAs independent of the elastomer’s electric breakdown field. Proc SPIE 8340:83402P

    Article  Google Scholar 

  • Gisby T, O’Brien B, Xie S et al (2011) Closed loop control of dielectric elastomer actuators. Proc SPIE 7976:797620

    Article  Google Scholar 

  • Jordi C, Michel S, Fink E (2010) Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir Biomim 5(2):026007

    Article  Google Scholar 

  • Knoop L, Rossiter J (2014) Towards shear tactile displays with DEAs. Proc SPIE 9056:905610

    Article  Google Scholar 

  • Kofod G, Paajanen M, Bauer S (2006) Self-organized minimum-energy structures for dielectric elastomer actuators. Appl Phys A 85(2):141–143

    Article  Google Scholar 

  • Koo I, Jung K, Koo J et al (2008) Development of soft-actuator-based wearable tactile display. IEEE Trans Robot 24(3):549–558

    Article  Google Scholar 

  • Kornbluh R, Pelrine R, Prahlad H et al (2011) From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. Proc SPIE 7976:797605

    Article  Google Scholar 

  • Kornbluh R, Pelrine R, Prahlad H et al (2012) Dielectric elastomers: stretching the capabilities of energy harvesting. MRS Bull 37(03):246–253

    Article  Google Scholar 

  • Lau G, Lim H, Teo J et al (2014) Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater Struct 23(2):025021

    Article  Google Scholar 

  • Lee H, Phung H, Lee D (2014) Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sensors Actuators A Phys 205:191–198

    Article  Google Scholar 

  • Liang D, Lin Z-F, Huang C-C et al (2014) Tunable lens driven by dielectric elastomer actuator with ionic electrodes. Micro Nano Lett 9(12):869–873

    Article  Google Scholar 

  • Maffli L, O’Brien B, Rosset S et al (2012) Pump it up. Proc SPIE 8340:83492Q

    Google Scholar 

  • Maffli L, Rosset S, Shea H et al (2013a) Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics. Proc SPIE 8687:86872M

    Article  Google Scholar 

  • Maffli L, Rosset S, Shea H (2013b) Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Mater Struct 22(10):104013

    Article  Google Scholar 

  • Maffli L, Rosset S, Ghilardi M, Carpi F, Shea H (2015) Ultrafast all polymer electrically tunable silicone lenses. Adv Funct Mater 25(11):1656–1665

    Article  Google Scholar 

  • Matysek M, Lotz P, Winterstein T et al (2009) Dielectric elastomer actuators for tactile display. In: IEEE EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems 3rd joint. Salt Lake City, pp 290–295

    Google Scholar 

  • McCoul D, Murray C, Di Carlo D et al (2013) Dielectric elastomer actuators for active microfluidic control. Proc SPIE 8687:86872G

    Article  Google Scholar 

  • Moretti G, Fontana M, Vertechy R (2014) Parallelogram-shaped dielectric elastomer generators: analytical model and experimental validation. J Intell Mater Syst Struct 26(6):740–751

    Article  Google Scholar 

  • Mößinger H, Haus H, Kauer M et al (2014) Tactile feedback to the palm using arbitrarily shaped DEA. Proc SPIE 9056:90563C

    Article  Google Scholar 

  • Murray C, McCoul D, Sollier E et al (2013) Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluid Nanofluid 14(1–2):345–358

    Article  Google Scholar 

  • Nguyen C, Phung H, Nguyen T et al (2014) A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators. Smart Mater Struct 23(6):065005

    Article  Google Scholar 

  • Niklaus M, Rosset S, Shea H (2010) Array of lenses with individually tunable focal-length based on transparent ion-implanted EAPs. Proc SPIE 7642:76422K

    Article  Google Scholar 

  • O’Brien B, Calius E, Inamura T et al (2010) Dielectric elastomer switches for smart artificial muscles. Appl Phys A 100(2):385–389

    Article  Google Scholar 

  • Optotune AG (2015) Available on www.optotune.com. Accessed 25 May 2015

  • Pei Q, Pelrine R, Stanford S et al (2002) Multifunctional electroelastomer rolls and their application for biomimetic walking robots. Proc SPIE 4698:246–253

    Article  Google Scholar 

  • Pei Q, Rosenthal M, Stanford S et al (2004) Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater Struct 13(5):N86–N92

    Article  Google Scholar 

  • Pelrine R, Kornbluh R, Eckerle J et al (2001) Dielectric elastomers: generator mode fundamentals and applications. Proc SPIE 4329:148–156

    Article  Google Scholar 

  • Pelrine R, Kornbluh R, Pei Q et al (2002) Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Proc SPIE 4695:126–137

    Article  Google Scholar 

  • Prahlad H, Pelrine R, Kornbluh R et al (2005) Programmable surface deformation: thickness-mode electroactive polymer actuators and their applications. Proc SPIE 5759:102–113

    Article  Google Scholar 

  • Price A, Culbertson C (2009) Generation of nonbiased hydrodynamic injections on microfluidic devices using integrated dielectric elastomer actuators. Anal Chem 81(21):8942–8948

    Article  Google Scholar 

  • Rosenthal M, Bonwit N, Duncheon C et al (2007) Applications of dielectric elastomer EPAM sensors. Proc SPIE 6524:65241F

    Article  Google Scholar 

  • Shian S, Diebold R, Clarke D (2013) Tunable lenses using transparent dielectric elastomer actuators. Opt Express 21:8669–8676

    Article  Google Scholar 

  • Son S, Goulbourne N (2010) Dynamic response of tubular dielectric elastomer transducers. Int J Solids Struct 47(20):2672–2679

    Article  Google Scholar 

  • Son S, Pugal D, Hwang T et al (2012) Electromechanically driven variable-focus lens based on transparent dielectric elastomer. Appl Opt 51:2987–2996

    Article  Google Scholar 

  • Wei K, Domicone N, Zhao Y (2014) Electroactive liquid lens driven by an annular membrane. Opt Lett 39:1318–1321

    Article  Google Scholar 

  • Yu Z, Yuan W, Brochu P et al (2009) Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Appl Phys Lett 95(19):192904

    Article  Google Scholar 

  • Yun S, Park S, Park B et al (2014) Polymer-based flexible visuo-haptic display. IEEE/ASME Trans Mechatron 19(4):1463–1469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibing Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pei, Q., Hu, W., McCoul, D., Biggs, S.J., Stadler, D., Carpi, F. (2016). Dielectric Elastomers as EAPs: Applications. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics