Skip to main content

Conducting Polymers as EAPs: Fundamentals and Materials

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

Films of conducting polymers (CPs) follow reversible volume variations by electrochemical oxidation/reduction in liquid electrolytes: the actuation principles are presented. Actuators, or artificial muscles, transducing those volume variations into large macroscopic movements are presented here. The same reaction gives exchange of anions, or cations, and opposed film volume variations (here described) from different families of CPs. Transduction from the small local volume changes to macroscopic movements has required different designs and structures. A good control of the movement requires a good theoretical description. Two different approaches, as mechanical-based devices or as electrochemical devices, are presented. Moreover the electrochemical reaction driving the muscles movement also senses any physical or chemical variable acting on the reaction energy. The sensing principle is presented giving dual sensing-actuators: an actuator, a mechanical sensor, a chemical sensor, a thermal sensor, and an electrical sensor work simultaneously, driven by the same reaction, in a physically uniform device. Only haptic muscles from mammals are dual actuating-sensor originating proprioception: the mammal brain is aware of position, movement rate and direction, trailed weight, muscle fatigue state, or working temperature during movements. The artificial proprioceptive equations, attained from electrochemical, mechanical, and polymeric principles, allow an easy description and control of the multi-tool device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albery W, Mount A (1993) Application of a transmission-line model to impedance studies on a poly(vinylferrocene)-modified electrode. J Chem Soc Faraday Trans 89:327–331. doi:10.1039/ft9938900327

    Article  Google Scholar 

  • Alici G, Huynh NN (2006) Predicting force output of trilayer polymer actuators. Sensors Actuators Phys 132:616–625. doi:10.1016/j.sna.2006.02.046

    Article  Google Scholar 

  • Alici G, Mui B, Cook C (2006) Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications. Sensors Actuators Phys 126:396–404. doi:10.1016/j.sna.2005.10.020

    Article  Google Scholar 

  • Alici G, Punning A, Shea HR (2011) Enhancement of actuation ability of ionic-type conducting polymer actuators using metal ion implantation. Sensors Actuators B Chem 157:72–84. doi:10.1016/j.snb.2011.03.028

    Article  Google Scholar 

  • Arias-Pardilla J, Walker W, Wudl F, Otero TF (2010) Reduction and oxidation doping kinetics of an electropolymerized donor–acceptor low-bandgap conjugated copolymer. J Phys Chem B 114(40):12777–12784

    Article  Google Scholar 

  • Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353. doi:10.1016/0379-6779(96)80158-5

    Article  Google Scholar 

  • Bisquert J, Belmonte GG, Santiago FF et al (2000) Application of a distributed impedance model in the analysis of conducting polymer films. Electrochem Commun 2:601–605. doi:10.1016/S1388-2481(00)00089-8

    Article  Google Scholar 

  • Breitenb M, Heckner K (1973) Electrochemical studies on formation and properties of polyaniline films. J Electroanal Chem 43:267–286. doi:10.1016/S0022-0728(73)80497-8

    Article  Google Scholar 

  • Chiang C, Fincher C, Park Y et al (1977) Electrical-conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101. doi:10.1103/PhysRevLett.39.1098

    Article  Google Scholar 

  • Cho MS, Choi JJ, Kim TS, Lee Y (2011) In situ three-dimensional analysis of the linear actuation of polypyrrole micro-rod actuators using optical microscopy. Sensors Actuators B Chem 156:218–221. doi:10.1016/j.snb.2011.04.021

    Article  Google Scholar 

  • Christophersen M, Shapiro B, Smela E (2006) Characterization and modeling of PPy bilayer microactuators – part 1. Curvature. Sensors Actuators B Chem 115:596–609. doi:10.1016/j.snb.2005.10.023

    Article  Google Scholar 

  • Conzuelo LV, Arias-Pardilla J, Cauich-Rodríguez JV et al (2010) Sensing and tactile artificial muscles from reactive materials. Sensors 10:2638–2674. doi:10.3390/s100402638

    Article  Google Scholar 

  • Dallolio A, Dascola G, Varacca V, Bocchi V (1968) Electronic paramagnetic resonance and conductivity of a black electrolytic oxypyrrole. C R Seances Acad Sci Ser C 267:433–435

    Google Scholar 

  • DellaSanta A, DeRossi D, Mazzoldi A (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100

    Article  Google Scholar 

  • Deshpande SD, Kim J, Yun SR (2005a) New electro-active paper actuator using conducting polypyrrole: actuation behaviour in LiClO(4) acetonitrile solution. Synth Met 149:53–58. doi:10.1016/j.synthmet.2004.11.001

    Article  Google Scholar 

  • Deshpande SD, Kim J, Yun SR (2005b) Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Mater Struct 14:876–880. doi:10.1088/0964-1726/14/4/048

    Article  Google Scholar 

  • Ding J, Liu L, Spinks GM et al (2003) High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth Met 138:391–398. doi:10.1016/S0379-6779(02)00453-8

    Article  Google Scholar 

  • Doebbelin M, Marcilla R, Pozo-Gonzalo C, Mecerreyes D (2010) Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. J Mater Chem 20:7613–7622. doi:10.1039/c0jm00114g

    Article  Google Scholar 

  • Du P, Lin X, Zhang X (2010) A multilayer bending model for conducting polymer actuators. Sensors Actuators Phys 163:240–246. doi:10.1016/j.sna.2010.06.002

    Article  Google Scholar 

  • Fang Y, Tan X, Alici G (2008a) Robust adaptive control of conjugated polymer actuators. IEEE Trans Control Syst Technol 16:600–612. doi:10.1109/TCST.2007.912112

    Article  Google Scholar 

  • Fang Y, Tan X, Shen Y et al (2008b) A scalable model for trilayer conjugated polymer actuators and its experimental validation. Mater Sci Eng C Biomim Supramol Syst 28:421–428. doi:10.1016/j.msec.2007.04.024

    Article  Google Scholar 

  • Fuchiwaki M, Otero TF (2014) Polypyrrole–para-phenolsulfonic acid/tape artificial muscle as a tool to clarify biomimetic driven reactions and ionic exchanges. J Mater Chem B 2:1954–1965. doi:10.1039/C3TB21653E

    Article  Google Scholar 

  • Fuchiwaki M, Tanaka K, Kaneto K (2009) Planate conducting polymer actuator based on polypyrrole and its application. Sensors Actuators Phys 150:272–276. doi:10.1016/j.sna.2009.01.011

    Article  Google Scholar 

  • Fuchiwaki M, Martinez JG, Otero TF (2015) Polypyrrole asymmetric bilayer artificial muscle: driven reactions, cooperative actuation, and osmotic effects. Adv Funct Mater 25:1535–1541. doi:10.1002/adfm.201404061

    Article  Google Scholar 

  • García-Córdova F, Valero L, Ismail YA, Otero TF (2011) Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations. J Mater Chem 21:17265–17272. doi:10.1039/C1JM13374H

    Article  Google Scholar 

  • Gere JM, Goodno BJ (2012) Mechanics of materials, Edición: revised. Cengage Learning, Stamford

    Google Scholar 

  • Gutta S, Realmuto J, Yim W, Kim KJ (2011) Dynamic model of a cylindrical ionic polymer-metal composite actuator. In: 2011 8th international conference on ubiquitous robots and ambient intelligence (URAI). Songdo Conventia, Incheon, pp 326–330

    Google Scholar 

  • Han GY, Shi GQ (2004) High-response tri-layer electrochemical actuators based on conducting polymer films. J Electroanal Chem 569:169–174. doi:10.1016/j.jelechem.2004.02.025

    Article  Google Scholar 

  • Han GY, Shi GQ (2006) Electrochemical actuator based on single-layer polypyrrole film. Sensors Actuators B Chem 113:259–264. doi:10.1016/j.snb.2005.02.055

    Article  Google Scholar 

  • Hara S, Zama T, Sewa S et al (2003) Polypyrrole-metal coil composites as fibrous artificial muscles. Chem Lett 32:800–801

    Article  Google Scholar 

  • Hara S, Zama T, Ametani A et al (2004) Enhancement in electrochemical strain of a polypyrrole-metal composite film actuator. J Mater Chem 14:2724–2725. doi:10.1039/b409169h

    Article  Google Scholar 

  • Hara S, Zama T, Tanaka N et al (2005) Artificial fibular muscles with 20% strain based on polypyrrole-metal coil composites. Chem Lett 34:784–785. doi:10.1246/cl.2005.784

    Article  Google Scholar 

  • Higgins SJ, Lovell KV, Rajapakse RMG, Walsby NM (2003) Grafting and electrochemical characterisation of poly-(3,4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate-polyvinylidene fluoride composite surfaces. J Mater Chem 13:2485–2489. doi:10.1039/b303424k

    Article  Google Scholar 

  • Ismail YA, Martínez JG, Al Harrasi AS et al (2011) Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle. Sensors Actuators B Chem 160:1180–1190. doi:10.1016/j.snb.2011.09.044

    Article  Google Scholar 

  • Ito T, Shirakaw H, Ikeda S (1974) Simultaneous polymerization and formation of polyacetylene film on surface of concentrated soluble Ziegler-type catalyst solution. J Polym Sci Part Polym Chem 12:11–20. doi:10.1002/pol.1974.170120102

    Article  Google Scholar 

  • Jager EWH, Inganas O, Lundstrom I (2000a) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338. doi:10.1126/science.288.5475.2335

    Article  Google Scholar 

  • Jager EWH, Smela E, Inganas O (2000b) Microfabricating conjugated polymer actuators. Science 290:1540–1545. doi:10.1126/science.290.5496.1540

    Article  Google Scholar 

  • John S, Alici G, Cook C (2008) Frequency response of polypyrrole trilayer actuator displacement. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices (EAPAD). Spie-Int Soc Optical Engineering, Bellingham

    Google Scholar 

  • Letheby H (1862) XXIX. On the production of a blue substance by the electrolysis of sulphate of aniline. J Chem Soc 15:161–163. doi:10.1039/JS8621500161

    Article  Google Scholar 

  • Lu W, Fadeev A, Qi B et al (2002) Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297:983–987. doi:10.1126/science.1072651

    Article  Google Scholar 

  • Martinez JG, Otero TF (2012) Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current. J Phys Chem B 116:9223–9230. doi:10.1021/jp302931k

    Article  Google Scholar 

  • Martinez JG, Otero TF (2014) Mechanical awareness from sensing artificial muscles: experiments and modeling. Sensors Actuators B Chem 195:365–372. doi:10.1016/j.snb.2013.12.099

    Article  Google Scholar 

  • Mazzoldi A, Degl’Innocenti C, Michelucci M, De Rossi D (1998) Actuative properties of polyaniline fibers under electrochemical stimulation. Mater Sci Eng C Biomim Mater Sens Syst 6:65–72. doi:10.1016/S0928-4931(98)00036-8

    Article  Google Scholar 

  • Messina R, Sarazin C, Yu L, Buvet R (1976) Semi-conducting polymer membranes with redox exchange properties – polyaniline and polypyrrole. J Chim Phys Phys Chim Biol 73:919–921

    Google Scholar 

  • Metz P, Alici G, SpinkS GM (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sensors Actuators Phys 130:1–11. doi:10.1016/j.sna.2005.12.010

    Article  Google Scholar 

  • Morita T, Chida Y, Hoshino D et al (2010) Fabrication and characterization of a polypyrrole soft actuator having corrugated structures. Mol Cryst Liq Cryst 519:121–127. doi:10.1080/15421401003609681

    Article  Google Scholar 

  • Müllen K, Reynolds JR, Masuda T (eds) (2013) Conjugated polymers: a practical guide to synthesis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Naka Y, Fuchiwaki M, Tanaka K (2010) A micropump driven by a polypyrrole-based conducting polymer soft actuator. Polym Int 59:352–356. doi:10.1002/pi.2762

    Article  Google Scholar 

  • Nakano T, Okamoto Y (2001) Synthetic helical polymers: conformation and function. Chem Rev 101:4013–4038. doi:10.1021/cr0000978

    Article  Google Scholar 

  • Nguyen CH, Alici G, Wallace G (2014) An advanced mathematical model and its experimental verification for trilayer conjugated polymer actuators. IEEE Asme Trans Mechatron 19:1279–1288. doi:10.1109/TMECH.2013.2280012

    Article  Google Scholar 

  • Okamoto T, Tada K, Onoda M (2000) Bending machine using anisotropic polypyrrole films. Jpn J Appl Phys Part 1 39:2854–2858. doi:10.1143/JJAP.39.2854

    Article  Google Scholar 

  • Okamoto T, Kato Y, Tada K, Onoda M (2001) Actuator based on doping/undoping-induced volume change in anisotropic polypyrrole film. Thin Solid Films 393:383–387. doi:10.1016/S0040-6090(01)01124-5

    Article  Google Scholar 

  • Okuzaki H, Hattori T (2003) Electrically induced anisotropic contraction of polypyrrole films. Synth Met 135:45–46. doi:10.1016/S0379-6779(02)00653-7

    Article  Google Scholar 

  • Okuzaki H, Saido T, Suzuki H et al (2008) A biomorphic origami actuator fabricated by folding a conducting paper. J Phys Conf Ser 127:012001. doi:10.1088/1742-6596/127/1/012001

    Article  Google Scholar 

  • Onoda M, Tada K (2004) Anisotropic bending machine using conducting polypyrrole. IEICE Trans Electron E87C:128–135

    Google Scholar 

  • Onoda M, Okamoto T, Tada K, Nakayama H (1999a) Polypyrrole films with anisotropy for artificial muscles and examination of bending behavior. Jpn J Appl Phys Part 2 38:L1070–L1072. doi:10.1143/JJAP.38.L1070

    Article  Google Scholar 

  • Onoda M, Tada K, Nakayama H (1999b) Polypyrrole films with anisotropy. Synth Met 102:1321–1322. doi:10.1016/S0379-6779(98)01031-5

    Article  Google Scholar 

  • Onoda M, Shonaka H, Tada K (2005) A self-organized bending-beam electrochemical actuator. Curr Appl Phys 5:194–201. doi:10.1016/j.cap.2004.06.013

    Article  Google Scholar 

  • Otero TF (1999) Conducting polymers, electrochemistry, and biomimicking processes. In: White RE, Bockris JO, Conway BE (eds) Modern aspects of electrochemistry. Springer US, New York, pp 307–434

    Google Scholar 

  • Otero TF (2013) Biomimetic conducting polymers: synthesis, materials, properties, functions, and devices. Polym Rev 53:311–351. doi:10.1080/15583724.2013.805772

    Article  Google Scholar 

  • Otero TF, Rodriguez J, Santamaria C Músculos artificiales formados por multicapas: polímeros conductores-polímeros no conductores. 11

    Google Scholar 

  • Otero TF, Broschart M (2006) Polypyrrole artificial muscles: a new rhombic element. Construction and electrochemomechanical characterization. J Appl Electrochem 36:205–214. doi:10.1007/s10800-005-9048-0

    Article  Google Scholar 

  • Otero TF, Cortes MT (2004) Artificial muscle: movement and position control. Chem Commun 284–285. doi:10.1039/b313132g

    Google Scholar 

  • Otero TF, Martinez JG (2012) Artificial muscles: A tool to quantify exchanged solvent during biomimetic reactions. Chem Mater 24:4093–4099. doi:10.1021/cm302847r

    Article  Google Scholar 

  • Otero TF, Martinez JG (2015) Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling. Prog Polym Sci 44:62–78. doi:10.1016/j.progpolymsci.2014.09.002

    Article  Google Scholar 

  • Otero TF, Sansiñena JM (1997) Bilayer dimensions and movement in artificial muscles. Bioelectrochem Bioenerg 42:117–122. doi:10.1016/S0302-4598(96)05112-4

    Article  Google Scholar 

  • Otero TF, Angulo E, Rodríguez J, Santamaría C (1992) Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material – artificial muscle. J Electroanal Chem 341:369–375. doi:10.1016/0022-0728(92)80495-P

    Article  Google Scholar 

  • Otero TF, Angulo E, Rodríguez F, Santamaría C (1994) Dispositivos laminares que emplean polímeros conductores capaces de provocar movimientos mecánicos

    Google Scholar 

  • Otero T, Cortes M, Arenas G (2007) Linear movements from two bending triple-layers. Electrochim Acta 53:1252–1258. doi:10.1016/j.electacta.2007.01.081

    Article  Google Scholar 

  • Otero TF, Sanchez JJ, Martinez JG (2012) Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature. J Phys Chem B 116:5279–5290. doi:10.1021/jp300290s

    Article  Google Scholar 

  • Otero TF, Martínez JG, Zaifoglu B (2013) Using reactive artificial muscles to determine water exchange during reactions. Smart Mater Struct 22:104019. doi:10.1088/0964-1726/22/10/104019

    Article  Google Scholar 

  • Otero TF, Martinez JG, Fuchiwaki M, Valero L (2014) Structural electrochemistry from freestanding polypyrrole films: full hydrogen inhibition from aqueous solutions. Adv Funct Mater 24:1265–1274. doi:10.1002/adfm.201302469

    Article  Google Scholar 

  • Paasch G (2000) The transmission line equivalent circuit model in solid-state electrochemistry. Electrochem Commun 2:371–375. doi:10.1016/S1388-2481(00)00040-0

    Article  Google Scholar 

  • Park SJ, Cho MS, Nam JD et al (2009) The linear stretching actuation behavior of polypyrrole nanorod in AAO template. Sensors Actuators B Chem 135:592–596. doi:10.1016/j.snb.2008.09.040

    Article  Google Scholar 

  • Pei Q, Inganas O (1992a) Conjugated polymers and the bending cantilever method – electrical muscles and smart devices. Adv Mater 4:277–278. doi:10.1002/adma.19920040406

    Article  Google Scholar 

  • Pei Q, Inganas O (1992b) Electrochemical applications of the bending beam method 1. Mass-transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514. doi:10.1021/j100204a071

    Article  Google Scholar 

  • Pei Q, Inganas O (1993a) Electrochemical applications of the bending beam method, a novel way to study ion-transport in electroactive polymers. Solid State Ion 60:161–166. doi:10.1016/0167-2738(93)90291-A

    Article  Google Scholar 

  • Pei Q, Inganas O (1993b) Electrochemical applications of the bending beam method 2. Electroshrinking and slow relaxation in polypyrrole. J Phys Chem 97:6034–6041. doi:10.1021/j100124a041

    Article  Google Scholar 

  • Plesse C, Vidal F, Teyssie D, Chevrot C (2009) Conducting IPN fibers: a new design for linear actuation in open air. In: Vincenzini P, BarCohen Y, Carpi F (eds) Artificial muscle actuators using electroactive polymers. Trans Tech Publications Ltd, Stafa-Zurich, pp 53–58

    Google Scholar 

  • Plesse C, Vidal F, Teyssie D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46:2910–2912. doi:10.1039/c001289k

    Article  Google Scholar 

  • Ren X, Pickup P (1995) Impedance measurements of ionic-conductivity as a probe of structure in electrochemically deposited polypyrrole films. J Electroanal Chem 396:359–364. doi:10.1016/0022-0728(95)04064-U

    Article  Google Scholar 

  • Sansinena JM, Gao JB, Wang HL (2003) High-performance, monolithic polyaniline electrochemical actuators. Adv Funct Mater 13:703–709. doi:10.1002/adfm.200304347

    Article  Google Scholar 

  • Shakuda S, Morita S, Kawai T, Yoshino K (1993) Dynamic characteristics of bimorph with conducting polymer gel. Jpn J Appl Phys Part 1 32:5143–5146. doi:10.1143/JJAP.32.5143

    Article  Google Scholar 

  • Shapiro B, Smela E (2007) Bending actuators with maximum curvature and force and zero interfacial stress. J Intell Mater Syst Struct 18:181–186. doi:10.1177/1045389X06063801

    Article  Google Scholar 

  • Shirakawa H, Louis E, Macdiarmid A et al (1977) Synthesis of electrically conducting organic polymers – halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580. doi:10.1039/c39770000578

    Google Scholar 

  • Shoa T, Madden JDW, Munce NR, Yang V (2010) Analytical modeling of a conducting polymer-driven catheter. Polym Int 59:343–351. doi:10.1002/pi.2783

    Article  Google Scholar 

  • Shoa T, Yoo DS, Walus K, Madden JDW (2011) A dynamic electromechanical model for electrochemically driven conducting polymer actuators. IEEE/ASME Trans Mechatron 16:42–49. doi:10.1109/TMECH.2010.2090166

    Article  Google Scholar 

  • Skotheim TA, Reynolds J (eds) (2006) Handbook of conducting polymers, 3rd edn. CRC Press, New York

    Google Scholar 

  • Smela E, Inganas O, Pei Q, Lundstrom I (1993) Electrochemical muscles – micromachining fingers and corkscrews. Adv Mater 5:630–632. doi:10.1002/adma.19930050905

    Article  Google Scholar 

  • Spinks GM, Zhou DZ, Liu L, Wallace GG (2003) The amounts per cycle of polypyrrole electromechanical actuators. Smart Mater Struct 12:468–472. doi:10.1088/0964-1726/12/3/318

    Article  Google Scholar 

  • Takashima W, Uesugi T, Fukui M et al (1997) Mechanochemoelectrical effect of polyaniline film. Synth Met 85:1395–1396. doi:10.1016/S0379-6779(97)80289-5

    Article  Google Scholar 

  • Takashima W, Pandey SS, Kaneto K (2003) Bi-ionic actuator by polypyrrole films. Synth Met 135:61–62. doi:10.1016/S0379-6779(02)00680-X

    Article  Google Scholar 

  • Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am Rev Sci Instrum 11:233–255. doi:10.1364/JOSA.11.000233

    Article  Google Scholar 

  • Valero L, Arias-Pardilla J, Cauich-Rodríguez J et al (2011) Characterization of the movement of polypyrrole–dodecylbenzenesulfonate–perchlorate/tape artificial muscles. Faradaic control of reactive artificial molecular motors and muscles. Electrochim Acta 56:3721–3726. doi:10.1016/j.electacta.2010.11.058

    Article  Google Scholar 

  • Valero L, Otero TF, Martínez JG (2014) Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles. ChemPhysChem 15:293–301. doi:10.1002/cphc.201300878

    Article  Google Scholar 

  • Valero L, Martinez JG, Otero TF (2015) Creeping and structural effects in Faradaic artificial muscles. J Solid St Electrochem 19:2683–2689. doi:10.1007/s10008-015-2775-1

    Google Scholar 

  • Vidal F, Plesse C, Aubert P-H et al (2010) Poly(3,4-ethylenedioxythiophene)-containing semi-interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices. Polym Int 59:313–320. doi:10.1002/pi.2772

    Article  Google Scholar 

  • Vlad A, Dutu CA, Jedrasik P et al (2012) Vertical single nanowire devices based on conducting polymers. Nanotechnology 23:025302. doi:10.1088/0957-4484/23/2/025302

    Article  Google Scholar 

  • Wang HL, Gao JB, Sansinena JM, McCarthy P (2002) Fabrication and characterization of polyaniline monolithic actuators based on a novel configuration: integrally skinned asymmetric membrane. Chem Mater 14:2546–2552. doi:10.1021/cm010933+

    Article  Google Scholar 

  • Wang X, Alici G, Tan X (2014) Modeling and inverse feedforward control for conducting polymer actuators with hysteresis. Smart Mater Struct 23:025015. doi:10.1088/0964-1726/23/2/025015

    Article  Google Scholar 

  • Xiang X, Alici G, Mutlu R, Li W (2014) How the type of input function affects the dynamic response of conducting polymer actuators. Smart Mater Struct 23:105008. doi:10.1088/0964-1726/23/10/105008

    Article  Google Scholar 

  • Yao Q, Alici G, Spinks GA (2008) Feedback control of tri-layer polymer actuators to improve their positioning ability and speed of response. Sensors Actuators Phys 144:176–184. doi:10.1016/j.sna.2008.01.005

    Article  Google Scholar 

  • Yim W, Lee J, Kim KJ (2007) An artificial muscle actuator for biomimetic underwater propulsors. Bioinspir Biomim 2:S31. doi:10.1088/1748-3182/2/2/S04

    Article  Google Scholar 

  • Zainudeen UL, Careem MA, Skaarup S (2008) PEDOT and PPy conducting polymer bilayer and trilayer actuators. Sensors Actuators B Chem 134:467–470. doi:10.1016/j.snb.2008.05.027

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from Spanish Government (MCI) Projects MAT2008-06702 and ESNAM, the European Scientific Network for Artificial Muscles. J. G. Martinez acknowledges Spanish Education Ministry for the FPU grant (AP2010-3460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toribio F. Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Otero, T.F., Martínez, J.G. (2016). Conducting Polymers as EAPs: Fundamentals and Materials. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics