Skip to main content

Finite Element Analysis of Thermodynamically Consistent Strain Gradient Plasticity Theory and Applications

  • Living reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

In this chapter, a coupled thermomechanical gradient-enhanced continuum plasticity theory containing the flow rules of the grain interior and grain boundary areas is developed within the thermodynamically consistent framework. Two-dimensional finite element implementation for the proposed gradient plasticity theory is carried out to examine the micro-mechanical and thermal characteristics of small-scale metallic volumes. The proposed model is conceptually based on the dislocation interaction mechanisms and thermal activation energy. The thermodynamic conjugate microstresses are decomposed into dissipative and energetic components; correspondingly, the dissipative and energetic length scales for both the grain interior and grain boundary are incorporated in the proposed model, and an additional length scale related to the geometrically necessary dislocation-induced strengthening is also included. Not only the partial heat dissipation caused by the fast transient time but also the distribution of temperature caused by the transition from the plastic work to the heat is included into the coupled thermomechanical model by deriving a generalized heat equation. The derived constitutive framework and two-dimensional finite element model are validated through the comparison with the experimental observations conducted on microscale thin films. The proposed enhanced model is examined by solving the simple shear problem and the square plate problem to explore the thermomechanical characteristics of small-scale metallic materials. Finally, some significant conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Voyiadjis .

Editor information

Editors and Affiliations

Appendix A. Deriving the Balance Equations

Appendix A. Deriving the Balance Equations

The total strain rate \( {\dot{\varepsilon}}_{ij} \) is defined as follows:

$$ {\dot{\varepsilon}}_{ij}=\frac{1}{2}\left({\dot{u}}_i{,}_j+{\dot{u}}_j{,}_i\right) $$
(103)

with the velocity gradient \( {\dot{u}}_i{,}_j=\partial {\dot{u}}_i/\partial {x}_j \).

By substituting Eq. (2) into Eq. (8), one obtains

$$ {\mathcal{P}}^{int}={\int}_{\Omega_0}\left({\sigma}_{ij}{\dot{\varepsilon}}_{ij}-{\sigma}_{ij}{\dot{\varepsilon}}_{ij}^p+\mathcal{x}{\dot{e}}^p+{\mathcal{Q}}_i{\dot{e}}_{,i}^p+\mathcal{A}\dot{\mathcal{T}}+{\mathcal{B}}_i{\dot{\mathcal{T}}}_{,i}\right) dV $$
(104)

From the plastic incompressibility (\( {\dot{\varepsilon}}_{kk}^p=0 \)), \( {\sigma}_{ij}{\dot{\varepsilon}}_{ij}^p={\overline{\sigma}}_{ij}{\dot{\varepsilon}}_{ij}^p \). The divergence theorem can be used here in Eq. (104) together with Eq. (103) to obtain the following expression:

$$\begin{aligned} {\mathcal{P}}^{int}&={\int}_{\partial {\Omega}_0}\left({\sigma}_{ij}{n}_j{\dot{u}}_i+{\mathcal{Q}}_i{n}_i{\dot{e}}^p+{\mathcal{B}}_i{n}_i\right) dS\\&\quad-{\int}_{\Omega_0}\left({\sigma}_{ij,j}{\dot{u}}_i-{\overline{\sigma}}_{ij}{\dot{\varepsilon}}_{ij}^p+\mathcal{x}{\dot{e}}^p-{\mathcal{Q}}_{i,i}{\dot{e}}^p+\mathcal{A}\dot{\mathcal{T}}-{\mathcal{B}}_{i,i}\dot{\mathcal{T}}\right) dV \end{aligned}$$
(105)

By equating the external power given in Eq. (9) to the internal power (\( {\mathcal{P}}^{int}={\mathcal{P}}^{ext} \)), the following expression is obtained:

$$\begin{aligned} &{\int}_{\partial {\Omega}_0}\left\{\left({\sigma}_{ij}{n}_j-{\mathcal{t}}_i\right){\dot{u}}_i+\left({\mathcal{Q}}_i{n}_i-\mathcal{m}\right){\dot{e}}^p+\left({\mathcal{B}}_i{n}_i-\mathcal{a}\right)\right\} dS\\&\quad-{\int}_{\Omega_0}\left\{\left({\sigma}_{ij,j}+{\mathcal{b}}_i\right){\dot{u}}_i+\left({\overline{\sigma}}_{ij}{N}_{ij}-\mathcal{x}+{\mathcal{Q}}_{i,i}\right){\dot{e}}^p+\left(\mathcal{A}-{\mathcal{B}}_{i,i}\right)\dot{\mathcal{T}}\right\} dV \end{aligned}$$
(106)

Here, \( {\dot{u}}_i \), \( {\dot{e}}^p \), and \( \dot{\mathcal{T}} \) can be designated randomly when the following conditions are satisfied:

$$ {\sigma}_{ij,j}+{\mathcal{b}}_i=0 $$
(107)
$$ {\overline{\sigma}}_{ij}=\left(\mathcal{x}-{\mathcal{Q}}_{k,k}\right){N}_{ij} $$
(108)
$$ {\mathcal{B}}_{i,i}-\mathcal{A}=0 $$
(109)
$$ {\mathcal{t}}_j={\sigma}_{ij}{n}_i $$
(110)
$$ \mathcal{m}={\mathcal{Q}}_i{n}_i $$
(111)
$$ \mathcal{a}={\mathcal{B}}_i{n}_i $$
(112)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Voyiadjis, G.Z., Song, Y. (2018). Finite Element Analysis of Thermodynamically Consistent Strain Gradient Plasticity Theory and Applications. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics