Skip to main content

Atomistic Simulation of Sol–Gel-Derived Hybrid Materials

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The amorphous nature and complex structure of sol–gel-derived hybrid materials often prohibit an experimental determination of the underlying atomistic and molecular structures in detail. Atomistic modeling methods provide an insight into these structures and are an effective tool for a better understanding of material behavior in general.

This chapter gives a short introduction to sophisticated hybrid polymers and different modeling approaches for these materials. As classical force field simulations are the method of choice for most problems, different methods to validate the results of this type of calculations are presented. Three hybrid polymer systems of different complexity are presented as model systems in detail. A generalized step-by-step simulation scheme is provided which can be applied to similar sol–gel-derived hybrid materials or polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Accounts. 2013;132:1334.

    Article  Google Scholar 

  • Abell GC. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B. 1985;31:6184–96.

    Article  Google Scholar 

  • Allcock HR. Inorganic–organic polymers. Adv Mater. 1994;6:106–15.

    Article  Google Scholar 

  • Amberg-Schwab S, Hoffmann M, Bader H, Gessler M. Inorganic–organic polymers with barrier properties for water vapor, oxygen and flavors. J Sol–Gel Sci Technol. 1998;1(2):141–6.

    Article  Google Scholar 

  • Asche TS, Behrens P, Schneider AM. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. submitted. 2016.

    Google Scholar 

  • Avnir D. Organic chemistry within ceramic matrices: doped sol–gel materials. Acc Chem Res. 1995;28:328–34.

    Article  Google Scholar 

  • Bacchi A, Feitosa V, da Silva Fonseca AQ, Cavalcante LA, Silikas N, Schneider LJ. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites. J Conserv Dent. 2015;18:384–8.

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.

    Article  Google Scholar 

  • Bharadwaj RK. Molecular dynamics simulation study of norbornene-POSS polymers. Polymer. 2000;41:7209–21.

    Article  Google Scholar 

  • Binder K. Monte Carlo methods in statistical physics. 2nd ed. Berlin: Springer; 1986.

    Book  Google Scholar 

  • Bizet S, Galy J, Gérard J-F. Molecular dynamics simulation of organic–inorganic copolymers based on methacryl-POSS and methyl methacrylate. Polymer. 2006;47:8219–27.

    Article  Google Scholar 

  • Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42:9458–71.

    Article  Google Scholar 

  • Brenner DW. Erratum: empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1992;46:1948.

    Article  Google Scholar 

  • Brenner DW, Harrison JA, White CT, Colton RJ. Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films. 1991;206:220–3.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. 1st ed. San Diego: Academic; 1990.

    Google Scholar 

  • Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller-Fiedler R, Rösch O. ORMOCER®s for optical interconnection technology. J Sol–gel Sci Technol. 2001;20:181–6.

    Article  Google Scholar 

  • Burmeister F, Steenhusen S, Houbertz R, Zeitner UD, Nolte S, Tünnermann A. Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization. J Laser Appl. 2012;24:042014.

    Article  Google Scholar 

  • Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, Schneider AM, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H. Chapter 5, Two-photon polymerization of inorganic–organic polymers for biomedical and microoptical applications. In: König K, Ostendorf A, editors. Optically induced nanostructures. Boston: Walter de Gruyter Inc; 2015. p. 239–66.

    Google Scholar 

  • Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc. 2005;127:7192–202.

    Article  Google Scholar 

  • Dassault Systèmes BIOVIA. BIOVIA materials studio. San Diego, CA 92121: USA; 2014.

    Google Scholar 

  • Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Genet. 1988;4:31–47.

    Article  Google Scholar 

  • de Jaeger R, Gleria M, editors. Inorganic polymers. New York: Nova Science Publishers; 2007.

    Google Scholar 

  • de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput. 2013;9:687–97.

    Article  Google Scholar 

  • de Pablo JJ. Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem. 2011;62:555–74.

    Article  Google Scholar 

  • Deetz JD, Faller R. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B. 2014;118:10966–78.

    Article  Google Scholar 

  • Deetz JD, Faller R. Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter. 2015a;11:6780–9.

    Article  Google Scholar 

  • Deetz JD, Faller R. Reactive molecular dynamics simulations of siliceous solids polycondensed from tetra- and trihydroxysilane. J Non Cryst Solids. 2015b;429:183–9.

    Article  Google Scholar 

  • Drisko GL, Sanchez C. Hybridization in materials science – evolution, current state, and future aspirations. Eur J Inorg Chem. 2012;2012:5097–105.

    Article  Google Scholar 

  • Elanany M, Selvam P, Yokosuka T, Takami S, Kubo M, Imamura A, Miyamoto A. A quantum molecular dynamics simulation study of the initial hydrolysis step in sol–gel process. J Phys Chem B. 2003;107:1518–24.

    Article  Google Scholar 

  • El-Murr J, Ruel D, St-Georges AJ. Effects of external bleaching on restorative materials: a review. J Can Dent Assoc. 2011;77:b59.

    Google Scholar 

  • Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. Chichester: Wiley; 1987.

    Google Scholar 

  • Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253–87.

    Article  Google Scholar 

  • Fessel S. Zur Zweiphotonenpolymerisation von ORMOCER®en: Modellierung und strukturelle Untersuchungen. Dissertation, Leibniz Universität. Hannover; 2013

    Google Scholar 

  • Fessel S, Schneider AM, Steenhusen S, Houbertz R, Behrens P. Towards an atomistic model for ORMOCER®-I: application of forcefield methods. J Sol–gel Sci Technol. 2012;63:356–65.

    Article  Google Scholar 

  • Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  Google Scholar 

  • Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen. Ann Phys. 1931;401:273–94.

    Article  Google Scholar 

  • Haas K-H, Rose K. Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications. Rev Adv Mater Sci. 2003;5:47–52.

    Google Scholar 

  • Haas K-H, Wolter H. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr Opin Solid State Mater Sci. 1999;4:571–80.

    Article  Google Scholar 

  • Haas K-H, Amberg-Schwab S, Rose K. Functionalized coating materials based on inorganic–organic polymers. Thin Solid Films. 1999;351:198–203.

    Article  Google Scholar 

  • Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 2003;12:399–450.

    Article  Google Scholar 

  • Halgren TA. Merck molecular force field. III. molecular geometries and vibrational frequencies for MMFF94. J Comput Chem. 1996;17:553–86.

    Article  Google Scholar 

  • Henschel H, Schneider AM, Prosenc MH. Initial steps of the sol–gel process: modeling silicate condensation in basic medium. Chem Mater. 2010;22:5105–11.

    Article  Google Scholar 

  • Hofmann D, Fritz L, Ulbrich J, Paul D. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides. Comput Theor Polym Sci. 2000;10:419–36.

    Article  Google Scholar 

  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.

    Article  Google Scholar 

  • Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park J-U, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films. 2003a;442:194–200.

    Article  Google Scholar 

  • Houbertz R, Fröhlich L, Popall M, Streppel U, Dannberg P, Bräuer A, Serbin J, Chichkov BN. Inorganic–organic hybrid polymers for information technology: from planar technology to 3D nanostructures. Adv Eng Mater. 2003b;5:551–5.

    Article  Google Scholar 

  • Houbertz R, Domann G, Schulz J, Olsowski B, Fröhlich L, Kim W-S. Impact of photoinitiators on the photopolymerization and the optical properties of inorganic–organic hybrid polymers. Appl Phys Lett. 2004;84:1105–7.

    Article  Google Scholar 

  • Hu H, Hou H, He Z, Wang B. Theoretical characterizations of the mechanism for the dimerization of monosilicic acid in basic solution. Phys Chem Chem Phys. 2013;15:15027–32.

    Article  Google Scholar 

  • Ionita M. Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Composites Part B Eng. 2012;43:3491–6.

    Article  Google Scholar 

  • Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU. Relative reactivity volume criterion for cross-linking: application to vinyl ester resin molecular dynamics simulations. Macromolecules. 2012;45:4876–85.

    Article  Google Scholar 

  • Kahlenberg F. Structure–property Correlations in Fluoroaryl Functionalized Inorganic–organic Hybrid Polymers for Telecom Applications. Dissertation, Julius-Maximilians-Universität, Würzburg; 2004.

    Google Scholar 

  • Kasemann R, Schmidt H. Coatings for mechanical and chemical protection based on organic–inorganic sol–gel nanocomposites. New J Chem. 1994;18:1117–23.

    Google Scholar 

  • Kickelbick G, editor. Hybrid materials. Synthesis, characterization, and applications. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.

    Google Scholar 

  • Kim W-S, Houbertz R, Lee TH, Bae BS. Effect of photoinitiator on photopolymerization of inorganic–organic hybrid polymers (ORMOCER®). J Polym Sci Part B Polym Phys. 2004;42:1979–86.

    Article  Google Scholar 

  • Kim W-S, Kim K-S, Eo Y-J, Yoon KB, Bae B-S. Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure. J Mater Chem. 2005;15:465.

    Article  Google Scholar 

  • Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging – a review. Packag Technol Sci. 2003;16:149–58.

    Article  Google Scholar 

  • Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37:364–76.

    Article  Google Scholar 

  • Levine IN. Quantum chemistry. 7th ed. Upper Saddle River: Pearson Education International; 2013.

    Google Scholar 

  • Li C, Strachan A. Molecular scale simulations on thermoset polymers: a review. J Polym Sci Part B Polym Phys. 2015;53:103–22.

    Article  Google Scholar 

  • López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hünenberger PH, Marrink SJ. Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput. 2009;5:3195–210.

    Article  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–24.

    Article  Google Scholar 

  • Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22:132–4.

    Article  Google Scholar 

  • Matějka L, Strachota A, Pleštil J, Whelan P, Steinhart M, Šlouf M. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules. 2004;37:9449–56.

    Article  Google Scholar 

  • McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part I – ab initio studies of the formation of trimers and tetramers. Phys Chem Chem Phys. 2013a;15:3155–72.

    Article  Google Scholar 

  • McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part II – derivation and benchmarking of a first principles kinetic model of solution chemistry. Phys Chem Chem Phys. 2013b;15:17496.

    Article  Google Scholar 

  • Metroke TL, Parkhill RL, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials – a review. Prog Org Coat. 2001;41:233–8.

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–92.

    Article  Google Scholar 

  • Microresist.de. Ormocore and Ormoclad datasheet. Available from: http://www.microresist.de/sites/default/files/download/PI_OrmoCore_OrmoClad_2015.pdf. Accessed 26 Jan 2016.

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput. 2008;4:819–34.

    Article  Google Scholar 

  • Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V. Sol–gel materials: 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater. 2008;24:851–6.

    Article  Google Scholar 

  • Newsome DA, Sengupta D, Foroutan H, Russo MF, van Duin ACT. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study part I. J Phys Chem C. 2012;116:16111–21.

    Article  Google Scholar 

  • Novak BM. Hybrid nanocomposite materials – between inorganic glasses and organic polymers. Adv Mater. 1993;5:422–33.

    Article  Google Scholar 

  • Pereira JCG, Catlow CRA, Price GD, Almeida RM. Atomistic modeling of silica based sol–gel processes. J Sol–gel Sci Technol. 1997;8:55–8.

    Google Scholar 

  • Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part I. Energies and conformations of simple clusters. J Phys Chem A. 1999a;103:3252–67.

    Article  Google Scholar 

  • Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part II. Structures and energies of complex clusters. J Phys Chem A. 1999b;103:3268–84.

    Article  Google Scholar 

  • Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B. ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta. 1998;43:1155–61.

    Article  Google Scholar 

  • Pursch M, Jäger A, Schneller T, Brindle R, Albert K, Lindner E. The sol–gel method: a new way to reversed phase materials. Synthesis and characterization by solid-state NMR spectroscopy. Chem Mater. 1996;8:1245–9.

    Article  Google Scholar 

  • Rappé AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–63.

    Article  Google Scholar 

  • Rimsza JM, Deng L, Du J. Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids. 2016;431:103–11.

    Article  Google Scholar 

  • Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter. 2011;7:698–708.

    Article  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    Article  Google Scholar 

  • Schottner G, Kron J, Deichmann A. Industrial application of hybrid sol–gel coatings for the decoration of crystal glassware. J Sol–gel Sci Technol. 1998;13:183–7.

    Article  Google Scholar 

  • Schottner G, Rose K, Posset U. Scratch and abrasion resistant coatings on plastic lenses – state of the art, current developments and perspectives. J Sol–gel Sci Technol. 2003;27:71–9.

    Article  Google Scholar 

  • Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett. 2003;28:301–3.

    Article  Google Scholar 

  • Shiu S-C, Tsai J-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B Eng. 2014;56:691–7.

    Article  Google Scholar 

  • Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model. 2013;19:3719–31.

    Article  Google Scholar 

  • Song X, Sun Y, Wu X, Zeng F. Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS). Comput Mater Sci. 2011;50:3282–9.

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–86.

    Article  Google Scholar 

  • Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–64.

    Article  Google Scholar 

  • Sun H, Rigby D. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties. Spectrochim Acta, Part A Mol Biomol Spectrosc. 1997;53:1301–23.

    Article  Google Scholar 

  • Tersoff J. New empirical model for the structural properties of silicon. Phys Rev Lett. 1986;56:632–5.

    Article  Google Scholar 

  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988a;37:6991–7000.

    Article  Google Scholar 

  • Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B. 1988b;38:9902–5.

    Article  Google Scholar 

  • Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ. Martini coarse-grained force field: extension to DNA. J Chem Theory Comput. 2015;11:3932–45.

    Article  Google Scholar 

  • van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–409.

    Article  Google Scholar 

  • van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003;107:3803–11.

    Article  Google Scholar 

  • van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. J Chem Phys. 1998;108:6109–16.

    Article  Google Scholar 

  • van Krevelen DW, te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th ed. Philadelphia: Elsevier; 2009.

    Google Scholar 

  • Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA. Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev. 2015;44:7044–111.

    Article  Google Scholar 

  • Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2009;31:671–90.

    Google Scholar 

  • Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev. 1967;159:98–103.

    Article  Google Scholar 

  • Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S. Glass transition investigations on highly crosslinked epoxy resins by molecular dynamics simulations. Mol Simul. 2015;41:1515–27.

    Article  Google Scholar 

  • Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol- gel approach. Chem Mater. 1996;8:1667–81.

    Article  Google Scholar 

  • White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ. Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 2011;40:1348–55.

    Article  Google Scholar 

  • Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47:6004–9.

    Article  Google Scholar 

  • Xin D, Han Q. Study on thermomechanical properties of cross-linked epoxy resin. Mol Simul. 2015;41:1081–5.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the State of Lower Saxony for general support of this work. T.S.A. and M.D. are grateful for fellowships obtained within the framework of the Graduate Program MARIO, also funded by the State of Lower Saxony. This work benefited from the cooperation within the research initiative Biofabrication for NIFE, funded by the Volkswagenstiftung and the State of Lower Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Asche, T.S., Duderstaedt, M., Behrens, P., Schneider, A.M. (2016). Atomistic Simulation of Sol–Gel-Derived Hybrid Materials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_109-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_109-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics