Skip to main content

The Electrochemistry of Peptide Self-Assembled Monolayers

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

The self-assembly ability of molecules is of fundamental importance in modern science and technology, making possible to produce nanostructures with a precision that is not achievable with classical lithographic miniaturization techniques. In particular, self-assembled monolayers (SAMs) formed by helical oligopeptides are very promising materials, used as archetypal systems in various fields of current nanoscience research, materials science, molecular biology, and surface science, and with potential application as molecular sensors and optoelectronic devices. The motivation for fabricating polypeptide SAMs is to exploit the unique features of polypeptide primary and secondary structures: it is possible to create a designed peptide sequence (a sequence of side chains with specified functionality) that in turn would be manifested in the corresponding SAM as spatially resolved, chemically distinct functionalities localized in a series of strata coplanar with the substrate. Moreover, the macrodipole moment associated with the vector sum of the individual peptide dipoles in an α-helical secondary structure gives rise to an intrinsically polar SAM, which favors electron-transfer in one precise direction and facilitates light-induced electron–hole separation, for appropriately placed chromophores. In this chapter we review the electrochemical properties of peptide SAMs, both in their fundamental and excited electronic states, focusing on their characterization and on their charge-transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Eaton DF (1991) Nonlinear optical materials. Science 253:281–287

    Article  CAS  Google Scholar 

  2. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  3. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  4. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  5. Enriquez EP, Gray CH, Guarisco VF, Linton RV, Mar DK, Samulski ET (1992) Behavior of rigid macromolecules in self-assembly at an interface. J Vacc Sci Technol 10:2775–2782

    Article  CAS  Google Scholar 

  6. Beratan DN, Onuchic JN, Winkler JR, Gray HB (1992) Electron-tunneling pathways in proteins. Science 258:1740–1741

    Article  CAS  Google Scholar 

  7. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  Google Scholar 

  8. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92:435–461

    Article  CAS  Google Scholar 

  9. Vassilian A, Wishart JF, Vanhemelryck B, Schwarz H, Isied SS (1991) Electron-transfer across polypeptides. 6. Long-range electron transfer in osmium-ruthenium binuclear complexes bridged with oligoproline peptides. J Am Chem Soc 112:7278–7286

    Article  Google Scholar 

  10. Ogawa MY, Wishart JF, Young ZY, Miller JR, Isied SS (1993) Distance dependence of intramolecular electron-transfer across oligoprolines in [(BPy)2RuIIL-(pro)n-CoIII (NH3)5]3+, n=1–6: different effects for helical and nonhelical polyproline-ii structures. J Phys Chem 97:11456–11463

    Google Scholar 

  11. Sisido M, Hoshino S, Kusano H, Kuragaki M, Makino M, Sasaki H, Smith TA, Ghiggino KP (2001) Distance dependence of photoinduced electron transfer along α-helical polypeptides. J Phys Chem B 105:10407–10415

    Article  CAS  Google Scholar 

  12. Shin YK, Newton MD, Isied SS (2003) Distance dependence of electron transfer across peptides with different secondary structures: the role of peptide energetic and electronic coupling. J Am Chem Soc 125:3722–3732

    Article  CAS  Google Scholar 

  13. Petrov EG, May V (2001) A unified description of superexchange and sequential donor-acceptor electron transfer mediated by a molecular bridge. J Phys Chem A 105:10176–10186

    Article  CAS  Google Scholar 

  14. Skourtis SS, Beratan DN (1997) High and low resolution theories of protein electron transfer. J Biol Inorg Chem 2:378–386

    Article  CAS  Google Scholar 

  15. Giese B, Napp M, Jacques O, Boudebous H, Taylor AM, Wirz J (2005) Multistep electron transfer in oligopeptides: direct observation of radical cation intermediates. Angew Chem 44:4073–4075

    Article  CAS  Google Scholar 

  16. Isied SS, Ogawa MY, Wishart JF (1992) Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chem Rev 92:381–394

    Article  CAS  Google Scholar 

  17. Sisido M, Tanaka R, Inai Y, Imanishi Y (1989) Photoinduced electron transfer on a single α-helical polypeptide chain. J Am Chem Soc 111:6790–6796

    Article  CAS  Google Scholar 

  18. Inai Y, Sisido M, Imanishi Y (1991) Photoinduced electron transfer on a single α-helical polypeptide chain. Evidence of a through-space mechanism. J Phys Chem 95:3847–3851

    Article  CAS  Google Scholar 

  19. Zheng YJ, Case MA, Wishart JF, McLendon GL (2003) Do main chain hydrogen bonds create dominant electron transfer pathways? An investigation in designed proteins. J Phys Chem B 107:7288–7292

    Article  CAS  Google Scholar 

  20. De Rege PJF, Williams SA, Therien MJ (1995) Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer. Science 269:1409–1413

    Article  Google Scholar 

  21. Fox MA, Galoppini E (1997) Electric field effect on electron transfer rates in dichromophoric peptides: the effect of helix unfolding. J Am Chem Soc 119:5277–5285

    Article  CAS  Google Scholar 

  22. Galoppini E, Fox MA (1996) Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric α-helical peptides. J Am Chem Soc 118:2299–2300

    Article  CAS  Google Scholar 

  23. Long YT, Abu-Irhayem E, Kraatz HB (2005) Peptide electron transfer: more questions than answers. Chem Eur J 11:5186–5194

    Article  CAS  Google Scholar 

  24. Cordes M, Giese B (2009) Electron transfer in peptides and proteins. Chem Soc Rev 38:892–901

    Article  CAS  Google Scholar 

  25. Bolton JR, Archer MD (1991) Basic electron transfer theory. In: Electron Transfer in Inorganic, Organic and Biological Systems, vol 228, Adv. Chem. Ser. American Chemical Society, Washington, DC, pp 7–23

    Chapter  Google Scholar 

  26. Newton MD (1991) Quantum chemical probes of electron transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91:767–792

    Article  CAS  Google Scholar 

  27. McConnell HM (1961) Intramolecular charge-transfer in aromatic free radicals. J Chem Phys 35:508–515

    Article  CAS  Google Scholar 

  28. Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A 71:3640–3644

    Article  CAS  Google Scholar 

  29. Malak RA, Gao Z, Wishart JF, Isied SS (2004) Long-range electron transfer across peptide bridges: the transition from electron superexchange to hopping. J Am Chem Soc 126:13888–13889

    Article  CAS  Google Scholar 

  30. Kai M, Takeda K, Morita T, Kimura S (2008) Distance dependence of long-range electron transfer through helical peptides. J Pept Sci 14:192–202

    Article  CAS  Google Scholar 

  31. Mandal HS, Kraatz HB (2012) Electron transfer mechanism in helical peptides. J Phys Chem Lett 3:709–713

    Article  CAS  Google Scholar 

  32. Dey SK, Long YT, Chowdhury S, Sutherland TC, Mandal HS, Kraatz HB (2007) Study of electron transfer in ferrocene-labeled collagen-like peptides. Langmuir 23:6475–6477

    Article  CAS  Google Scholar 

  33. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  34. Adams DM, Brus L, Chidsey CE, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle ME, Miller JR, Newton MD, Rolison DR, Sankey O, Schanze KS, Yardley J, Zhu X (2003) Charge transfer on the nanoscale: current status. J Phys Chem B 107:6668–6697

    Article  CAS  Google Scholar 

  35. Antonello S, Formaggio F, Moretto A, Toniolo C, Maran F (2003) Anomalous distance dependence of electron transfer across peptide bridges. J Am Chem Soc 125:2874–2875

    Article  CAS  Google Scholar 

  36. Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Pathway analysis of protein electron transfer reactions. Annu Rev Biophys Biomol Struct 21:349–377

    Article  CAS  Google Scholar 

  37. Kourtis SS, Balabin IA, Kawatsu T, Beratan DN (2005) Protein dynamics and electron transfer. Electronic decoherence and non-Condon effects. Proc Natl Acad Sci USA 102:3552–3557

    Article  Google Scholar 

  38. Prytkova TR, Kurnokov IV, Beratan DN (2007) Coupling coherence distinguishes structure sensitivity in protein electron transfer. Science 315:622–625

    Article  CAS  Google Scholar 

  39. Mabbott GA (1983) An introduction to cyclic voltammetry. J Chem Educ 60:697–702

    Article  CAS  Google Scholar 

  40. Kissinger PT, Heineman WR (1983) Cyclic voltammetry. J Chem Educ 60:702–706

    Article  CAS  Google Scholar 

  41. Finklea HO, Snider DA, Fedyk J (1993) Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir 9:3660–3667

    Article  CAS  Google Scholar 

  42. Diao P, Jiang D, Cui X, Gu D, Tong R, Zhong B (1999) Studies of structural disorder of self-assembled thiol monolayers on gold by cyclic voltammetry and ac impedance. J Electroanal Chem 464:61–67

    Article  CAS  Google Scholar 

  43. Krysinski P, Smolska BN (1997) Three-probe voltammetric characterisation of octadecanethiol self-assembled monolayer integrity on gold electrodes. J Electroanal Chem 424:61–67

    Article  CAS  Google Scholar 

  44. Gatto E, Venanzi M, Palleschi A, Stella L, Pispisa B, Lorenzelli L, Toniolo C, Formaggio F, Marletta G (2007) Self-assembled peptide monolayers on interdigitated gold microelectrodes. Mater Sci Eng C 27:1309–1312

    Article  CAS  Google Scholar 

  45. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254:1769–1802

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner RL (2001) Electrochemical Methods: Fundamental and Applications, 2nd edn. John Wiley and Sons, Inc, New York

    Google Scholar 

  47. Okamoto S, Morita T, Kimura S (2009) Electron transfer through a self-assembled monolayer of a double-helix peptide with linking the terminals by ferrocene. Langmuir 25:3297–3307

    Article  CAS  Google Scholar 

  48. Forster J, Keyes TE, Vos JG (2003) Interfacial Supramolecular Assemblies. Wiley, England

    Google Scholar 

  49. Finklea HO (1996) Electrochemistry of Organized Monolayers of Thiols and Related Molecules on Electrodes. In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry. Dekker, New York, pp 109–335

    Google Scholar 

  50. Sek S, Tolak A, Misicka A, Palys B, Bilewics R (2005) Asymmetry of electron transmission through monolayers of helical polyalanine adsorbed on gold surfaces. J Phys Chem B 109:18433–18438

    Article  CAS  Google Scholar 

  51. Gatto E, Porchetta A, Scarselli M, De Crescenzi M, Formaggio F, Toniolo C, Venanzi M (2012) Playing with peptides: how to build a supramolecular peptide nanostructure by exploiting helix···helix macrodipole interaction. Langmuir 28:2817–2826

    Article  CAS  Google Scholar 

  52. Ravenscroft MS, Finklea HO (1994) Kinetics of electron transfer to attached redox centers on gold electrodes in nonaqueous electrolytes. J Phys Chem 98:3843–3850

    Article  CAS  Google Scholar 

  53. Finklea HO, Hanshew DD (1992) Electron-transfer kinetics in organized Thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers. J Am Chem Soc 114:3173–3181

    Article  CAS  Google Scholar 

  54. Watanabe J, Morita T, Kimura S (2005) Effects of dipole moment, linkers and chromophores at side chains on long-range electron transfer through helical peptides. J Phys Chem B 109:14416–14425

    Article  CAS  Google Scholar 

  55. Creager SE, Wooster TT (1998) A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Anal Chem 70:4257–4263

    Article  CAS  Google Scholar 

  56. Sek S, Sepiol A, Tolak A, Misicka A, Bilewicz R (2004) Distance dependence of the electron transfer rate through oligoglycine spacers introduced into self-assembled monolayers. J Phys Chem B 108:8102–8105

    Article  CAS  Google Scholar 

  57. Mc Donald JS, Potter LD (1987) A flexible procedure for analyzing impedance spectroscopy results: description and illustrations. Solid State Ion 23:61–79

    Article  Google Scholar 

  58. Janek RP, Fawcett WR, Ulman A (1997) Impedance spectroscopy of self-assembled monolayers on Au(111): evidence for complex double-layer structure in aqueous NaClO4 at the potential of zero charge. J Phys Chem B 101:8550–8558

    Article  CAS  Google Scholar 

  59. Arikuma Y, Takeda K, Morita T, Ohmae M, Kimura S (2009) Linker effects on monolayer formation and long-range electron transfer in helical peptide monolayers. J Phys Chem B 113:6256–6266

    Article  CAS  Google Scholar 

  60. Takeda K, Morita T, Kimura S (2008) Effects of monolayer structures on long-range electron transfer in helical peptide monolayer. J Phys Chem B 112:12840–12850

    Article  CAS  Google Scholar 

  61. Laviron E (1979) A. C. polarography and faradaic impedance of strongly adsorbed electroactive species. Part III: theoretical complex plane analysis for a surface redox reaction. J Electroanal Chem Interfacial Electrochem 105:35–42

    Article  CAS  Google Scholar 

  62. Mandal HS, Kraatz HB (2006) Electron transfer across α-helical peptides: potential influence of molecular dynamics. Chem Phys 326:246–251

    Article  CAS  Google Scholar 

  63. Arikuma Y, Nakayama H, Morita T, Kimura S (2010) Electron hopping over 100 Å along an α-helix. Angew Chem Int Ed 49:1800–1804

    Article  CAS  Google Scholar 

  64. Arikuma Y, Nakayama H, Morita T, Kimura S (2011) Ultra-long-range electron transfer through a self-assembled monolayer on gold composed of 120 Å-long α-helices. Langmuir 27:1530–1535

    Article  CAS  Google Scholar 

  65. Janek RP, Fawcett WR, Ulman A (1998) Impedance spectroscopy of self-assembled monolayers on Au (111). Langmuir 14:3011–3018

    Article  CAS  Google Scholar 

  66. Kuhn JH, Braslavsky SE, Schmidt R (1989) Chemical actinometry. Pure Appl Chem 61:187–210

    Article  CAS  Google Scholar 

  67. Venanzi M, Pace G, Palleschi A, Stella L, Castrucci P, Scarselli M, De Crescenzi M, Formaggio F, Toniolo C, Marletta G (2006) Densely-packed self-assembled monolayers on gold surfaces from a conformationally constrained helical hexapeptide. Surface Sci 600:409–416

    Article  CAS  Google Scholar 

  68. Pace G, Venanzi M, Castrucci P, Scarselli M, De Crescenzi M, Palleschi A, Stella L, Formaggio F, Toniolo C, Marletta G (2006) Static and dynamic features of a helical hexapeptide chemisorbed on a gold surface. Mater Sci Eng C 26:918–923

    Article  CAS  Google Scholar 

  69. Toniolo C, Crisma M, Formaggio F, Peggion C (2001) Control of peptide conformation by the Thorpe-Ingold effect (Cα-tetrasubstitution). Biopolymers (Pept Sci) 60:396–419

    Article  CAS  Google Scholar 

  70. Wada A (1976) The alpha-helix as an electric macro-dipole. Adv Biophys 9:1–63

    CAS  Google Scholar 

  71. Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304:1944–1947

    Article  CAS  Google Scholar 

  72. Miura Y, Kimura S, Kobayashi S, Iwamoto M, Imanishi Y, Umemura U (1999) Negative surface potential produced by self-assembled monolayers of helix peptides oriented vertically to a surface. Chem Phys Lett 315:1–6

    Article  CAS  Google Scholar 

  73. Galka MM, Kraatz HB (2002) Electron transfer studies on self assembled monolayers of helical ferrocenoyl-oligoproline cystamine bound to gold. ChemPhysChem 3:356–359

    Article  CAS  Google Scholar 

  74. Morita T, Kimura S (2003) Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides. J Am Chem Soc 125:8732–8733

    Article  CAS  Google Scholar 

  75. Sek S, Palys B, Bilewicz R (2002) Contribution of intermolecular interactions to electron transfer through monolayers of alkanethiols containing amide groups. J Phys Chem B 106:5907–5914

    Article  CAS  Google Scholar 

  76. Berlin YA, Ratner MA (2005) Intra-molecular electron transfer and electric conductance via sequential hopping: unified theoretical description. Radiat Phys Chem 74:124–131

    Article  CAS  Google Scholar 

  77. Wain AJ, Do HNL, Mandal HS, Kraatz HB, Zhou F (2008) Influence of molecular dipole moment on the redox-induced reorganization of α-helical peptide self-assembled monolayers: an electrochemical SPR investigation. J Phys Chem C 112:14513–14519

    Article  CAS  Google Scholar 

  78. Schlag EW, Scheu SY, Yang DY, Selzle HL, Lin SH (2000) Charge conductivity in peptides: dynamic simulations of a bifunctional model supporting experimental data. Proc Natl Acad Sci U S A 97:1068–1072

    Article  CAS  Google Scholar 

  79. Petrov EG, Shevchenko V, Teslenko VI, May V (2001) Nonadiabatic donor-acceptor electron transfer mediated by a molecular bridge: a unified theoretical description of the superexchange and hopping mechanism. J Chem Phys 115:7107–7122

    Article  CAS  Google Scholar 

  80. Bixon M, Jortner J (1997) Electron transfer via bridges. J Chem Phys 107:5154–5170

    Article  CAS  Google Scholar 

  81. Morita T, Kimura S, Kobayashi S (2000) Photocurrent generation under a large dipole moment formed by self-assembled monolayers of helical peptides having an N-Ethylcarbazolyl group. J Am Chem Soc 122:2850–2859

    Article  CAS  Google Scholar 

  82. Yanagisawa K, Morita T, Kimura S (2004) Efficient photocurrent generation by self-assembled monolayers composed of 310-helical peptides carrying linearly spaced Naphthyl groups at the side chains. J Am Chem Soc 126:12780–12781

    Article  CAS  Google Scholar 

  83. Mandal HS, Burgess IJ, Kraatz HB (2006) Investigation of laser induced photocurrent generation experiments. Chem Comm 4802–4804

    Google Scholar 

  84. Gatto E, Stella L, Baldini C, Venanzi M, Toniolo C, Formaggio F (2009) Photocurrent generation in peptide-based self-assembled monolayers on gold electrodes. Superlatt Microstruct 46:34–39

    Article  CAS  Google Scholar 

  85. Gatto E, Caruso M, Porchetta A, Toniolo C, Formaggio F, Crisma M, Venanzi M (2011) Photocurrent generation through peptide-based self-assembled monolayers on a gold surface: antenna and junction effects. J Pept Sci 17:124–131

    Article  CAS  Google Scholar 

  86. Gatto E, Stella L, Formaggio F, Toniolo C, Lorenzelli L, Venanzi M (2008) Electroconductive and photocurrent generation properties of self-assembled monolayers formed by functionalized, conformationally constrained peptides on gold electrodes. J Pept Sci 14:184–191

    Article  CAS  Google Scholar 

  87. Gatto E, Porchetta A, Stella L, Guryanov I, Formaggio F, Toniolo C, Kaptein B, Broxterman QB, Venanzi M (2008) Conformational effects on the electron-transfer efficiency in peptide foldamers based on α, α-disubstituted glycyl residues. Chem Biodivers 5:1263–1278

    Article  CAS  Google Scholar 

  88. Yasutomi S, Morita T, Kimura S (2005) pH-controlled switching of photocurrent detection by self-assembled monolayer of helical peptides. J Am Chem Soc 127:14564–14565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Gatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Gatto, E., Caruso, M., Venanzi, M. (2015). The Electrochemistry of Peptide Self-Assembled Monolayers. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics