Skip to main content

Subchondral Bone Grafting

  • Reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

The importance of subchondral bone in the pathogenesis of osteoarthritis is well known, but its crucial role in the treatment of traumatic cartilage lesions is still underestimated. The subchondral bone region is both an important shock absorber and crucial for the cartilage nutrition and metabolism. When repairing chondral and osteochondral lesions, more knowledge is needed of how to return the cartilage-bone unit into a well-functioning biomechanical area in order to reestablish the disturbed joint homeostasis. Clinically, subchondral grafting is often used when repairing osteochondral defects, and the surgeon has to consider how to best fill up the subchondral area for the best development of the overlying cartilage. However, also pure chondral lesions with sclerotic bone plates might be turned into a subchondral lesion to improve the gradient repair from bone to cartilage area. Autologous bone in different formats is most often the first choice when repairing defects, but allogeneic and synthetic bone alternatives are in much use. This chapter will discuss the importance of the subchondral bone and how to use subchondral bone grafting in combination with cartilage repairs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 971.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Investig Radiol. 2000;35(10):581–8.

    Article  CAS  Google Scholar 

  2. Burr DB. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol. 2004;70:77–80.

    Google Scholar 

  3. Marionneaux A, Walters J, Guo H, Mercuri J. Tailoring the subchondral bone phase of a multi-layered osteochondral construct to support bone healing and a cartilage analog. Acta Biomater. 2018;78:351–64.

    Article  CAS  PubMed  Google Scholar 

  4. Arboleya L, Castañeda S. Osteoimmunology: the study of the relationship between the immune system and bone tissue. Reumatol Clin. 2013;9:303–15.

    Article  PubMed  Google Scholar 

  5. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.

    Article  CAS  PubMed  Google Scholar 

  6. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.

    Article  CAS  PubMed  Google Scholar 

  7. Bates P, Ramachandran M. Bone injury, healing and grafting. In: Edward RM, editor. Basic orthopaedic sciences. The stanmore guide. London: Arnold Publisher Ltd; 2007. p. 123–34.

    Google Scholar 

  8. Allsopp BJ, Hunter-Smith DJ, Rozen WM. Vascularized versus nonvascularized bone grafts: what is the evidence? Clin Orthop Relat Res. 2016;474(5):1319–27. https://doi.org/10.1007/s11999-016-4769-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aulakh TS, Jayasekera N, Kuiper JH, Richardson JB. Long-term clinical outcomes following the use of synthetic hydroxyapatite and bone graft in impaction in revision hip arthroplasty. Biomaterials. 2009 Mar;30(9):1732–8.

    Article  CAS  PubMed  Google Scholar 

  10. Pearsall AW 4th, Tucker JA, Hester RB, Heitman RJ. Chondrocyte viability in refrigerated osteochondral allografts used for transplantation within the knee. Am J Sports Med. 2004;32(1):125–3.

    Article  PubMed  Google Scholar 

  11. Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.

    Article  Google Scholar 

  12. Harford JS, Dekker TJ, Adams SB. Bone marrow aspirate concentrate for bone healing in foot and ankle surgery. Foot Ankle Clin. 2016 Dec;21(4):839–45.

    Article  PubMed  Google Scholar 

  13. Lim ZXH, Rai B, Tan TC, Ramruttun AK, Hui JH, Nurcombe V, Teoh SH, Cool SM. Autologous bone marrow clot as an alternative to autograft for bone defect healing. Bone Joint Res. 2019;8(3):107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimmermann R, Gabl M, Lutz M, Angermann P, Gschwentner M, Pechlaner S. Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg. 2003 Feb;123(1):22–7.

    Article  PubMed  Google Scholar 

  16. Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30:26–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Zhang G, Wang Y, Liu T, Zhang Y, An Y, Li Y. Crosstalk of mesenchymal stem cells and macrophages promotes cardiac muscle repair. Int J Biochem Cell Biol. 2015;58:53–61.

    Article  CAS  PubMed  Google Scholar 

  18. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35:4477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207.

    Article  CAS  PubMed  Google Scholar 

  20. Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090–102.

    Article  CAS  PubMed  Google Scholar 

  21. Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Redini F, Heymann D, Layrolle P, Blanchard F. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185:765–75.

    Article  CAS  PubMed  Google Scholar 

  22. Dabra S, Chhina K, Soni N, Bhatnagar R. Tissue engineering in periodontal regeneration: a brief review. Dent Res J. 2012;9(6):671–80.

    CAS  Google Scholar 

  23. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007;11(30):1–150.

    Article  CAS  PubMed  Google Scholar 

  24. Mahantesha SKS, Mani R, Deshpande A, Seshan H, Kranti K. Clinical and radiographic evaluation of demineralized bone matrix (Grafton) as a bone graft material in the treatment of human periodontal intraosseous defects. J Indian Soc Periodontol. 2013;17(4):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kinney RC, Ziran BH, Hirshorn K, Schlatterer D, Ganey T. Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma. 2010;24(Suppl 1):S52–5.

    Article  PubMed  Google Scholar 

  26. Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation: biomechanics and long term durability. Am J Sports Med. 2002;30:2–12.

    Article  PubMed  Google Scholar 

  27. Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1(1):65–8. https://doi.org/10.1177/1947603509360044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kon E, Filardo G, Brittberg M, et al. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2704–15.

    Article  PubMed  Google Scholar 

  30. Kon E, Filardo G, Shani J, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res. 2015;10:81.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moyad TF, Minas T. Opening wedge high tibial osteotomy: a novel technique for harvesting autograft bone. J Knee Surg. 2008;21:80–4.

    Article  PubMed  Google Scholar 

  32. Brucker P, Agneskirchner JD, Burkart A, Imhoff AB. Mega-OATS. Technik und Ergebnisse [Mega-OATS. Technique and outcome]. Unfallchirurg. 2002;105(5):443–9. German

    Article  CAS  PubMed  Google Scholar 

  33. Calcei JG, Ray T, Sherman SL, Farr J. Management of large focal chondral and osteochondral defects in the knee. J Knee Surg. 2020;33(12):1187–200.

    Article  PubMed  Google Scholar 

  34. Fleischhacker E, Ehrl D, Fürmetz J, Meller R, Böcker W, Zeckey C. Rekonstruktion großer osteochondraler Defekte des distalen Femurs und der proximalen Tibia : Anpassung frisch gefrorener Allografts unter Zuhilfenahme 3D-gedruckter Kunststoffmodelle [Reconstruction of large osteochondral defects of the distal femur and proximal tibia : Adaptation of fresh frozen allografts using 3D-printed models]. Unfallchirurg. 2021;124(1):74–9. German

    Article  CAS  PubMed  Google Scholar 

  35. Tägil M, Astrand J, Westman L, Aspenberg P. Alendronate prevents collapse in mechanically loaded osteochondral grafts: a bone chamber study in rats. Acta Orthop Scand. 2004;75(6):756–61.

    Article  PubMed  Google Scholar 

  36. Farr J, Cohen S. Subchondral plasty as an emerging treatment option for sports-related subchondral stress fractures. In: Aspetar sports medicine collection, Aspire printing process, vol. 2. Qatar: Ed Popovic N. Doha; 2020. p. 677–84.

    Google Scholar 

  37. Mirhadi S, Ashwood N, Karagkevrekis B. Factors influencing fracture healing. Trauma. 2013;15(2):140–55.

    Article  Google Scholar 

  38. Patel RA, Wilson RF, Patel PA, Palmer RM. The effect of smoking on bone healing: a systematic review. Bone Joint Res. 2013;2(6):102–11. Published 2013 Jun 14. https://doi.org/10.1302/2046-3758.26.2000142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hernigou J, Schuind F. Tobacco and bone fractures: a review of the facts and issues that every orthopaedic surgeon should know. Bone Joint Res. 2019;8(6):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A, Poole AR, Auer JA. Changes in subchondral bone in cartilage resurfacing – an experimental study in sheep using different types of osteochondral grafts. Osteoarthr Cartil. 2003;11(4):265–77.

    Article  Google Scholar 

  42. Schlichting K, Schell H, Kleemann RU, Schill A, Weiler A, Duda GN, Epari DR. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med. 2008;36(12):2379–91.

    Article  PubMed  Google Scholar 

  43. Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I. Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):463–71.

    Article  PubMed  Google Scholar 

  44. Matsuo T, Kita K, Mae T, Yonetani Y, Miyamoto S, Yoshikawa H, Nakata K. Bone substitutes and implantation depths for subchondral bone repair in osteochondral defects of porcine knee joints. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1401–9.

    Article  PubMed  Google Scholar 

  45. Jung M, Karampinos DC, Holwein C, Suchowierski J, Diallo TD, Gersing AS, Bamberg F, Baumann FA, Ruschke S, Jungmann PM. Quantitative 3-T magnetic resonance imaging after matrix-associated autologous chondrocyte implantation with autologous bone grafting of the knee: the importance of subchondral bone parameters. Am J Sports Med. 2021;49(2):476–86.

    Article  PubMed  Google Scholar 

  46. Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg. 2012;25(2):85–97.

    Article  PubMed  Google Scholar 

  47. Nguyen D, Hägg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7(1):658.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gatenholm B, Lindahl C, Brittberg M, Stadelmann VA. Spatially matching morphometric assessment of cartilage and subchondral bone in osteoarthritic human knee joint with micro-computed tomography. Bone. 2019 Mar;120:393–402.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Brittberg .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brittberg, M. (2024). Subchondral Bone Grafting. In: Sherman, S.L., Chahla, J., LaPrade, R.F., Rodeo, S.A. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-29430-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29430-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29429-7

  • Online ISBN: 978-3-031-29430-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics