Skip to main content

Subchondral Bone Augmentation for Treatment of Bone Marrow Lesions

  • Reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

Bone marrow lesions (BMLs) are areas of medullary fat necrosis, fibrosis, trabecular microfracture, and poor mineralization. Delayed or incomplete treatment of these lesions can result in subchondral bone impaction, collapse, and joint surface violation. They are correlated with worsening knee pain, decreased function, cartilage loss, and a nine times increased risk of required total knee arthroplasty in the future. The osteochondral unit consists of deeper cancellous bone followed by more superficial subchondral bone. Non-operative treatment centers around a period of rest in addition to oral nonsteroidal anti-inflammatory drugs (NSAIDs), braces, medical management, and physical therapy. Operative management is based on the “regenerative tissue engineering triad” that stimulates cell regeneration and functionality, growth factors and cytokines, and scaffolds to help support a regenerative environment. Intraosseous bioplasty and subchondroplasty are two commonly used subchondral bone augmentation procedures used in the treatment of bone marrow lesions. While intraosseous bioplasty (IOBP) has been utilized to treat BMLs in isolation and subchondroplasty for BMLs in the setting of osteoarthritis, both do have promising results when used in the right patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 971.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wayne McIlwraith C, Frisbie DD, Kawcak C, van Weeren R. Joint disease in the horse. St. Louis: Elsevier Health Sciences; 2015.

    Google Scholar 

  2. Eriksen EF, Ringe JD. Bone marrow lesions: a universal bone response to injury? Rheumatol Int. 2012;32:575–84.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema? Radiology. 1988;167:757–60.

    Article  CAS  PubMed  Google Scholar 

  4. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, Kazis L, Gale DR. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kunze KN, Serino J, Chahla J, Gomoll AH, Mandelbaum B. Focal chondral and subchondral bone lesions of the knee: current evidence for the use of biologic treatment. Oper Tech Sports Med. 2020;28:150716.

    Article  Google Scholar 

  6. Akhavan S, Martinkovich SC, Kasik C, DeMeo PJ. Bone marrow edema, clinical significance, and treatment options: a review. J Am Acad Orthop Surg. 2020;28:e888–99.

    Article  PubMed  Google Scholar 

  7. Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol. 2002;179:641–4.

    Article  PubMed  Google Scholar 

  8. Marcacci M, Andriolo L, Kon E, Shabshin N, Filardo G. Aetiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee. EFORT Open Rev. 2016;1:219–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17:445–9.

    Article  CAS  PubMed  Google Scholar 

  10. Vellet AD, Marks PH, Fowler PJ, Munro TG. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178:271–6.

    Article  CAS  PubMed  Google Scholar 

  11. Goyal DR. The illustrative book of cartilage repair. Cham: Springer Nature; 2020.

    Google Scholar 

  12. Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage. Investig Radiol. 2000;35:573–80.

    Article  CAS  Google Scholar 

  13. Gobbi A, Dallo I, Frank RM, Bradsell H, Saenz I, Murrel W. A review of bone marrow lesions in the arthritic knee and description of a technique for treatment. J Cartilage Joint Preserv. 2021;1:100021.

    Article  Google Scholar 

  14. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:419–33.

    Article  PubMed  Google Scholar 

  15. Hernigou P, Poignard A, Zilber S, Rouard H. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop. 2009;43:40–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Compagnoni R, Lesman J, Ferrua P, Menon A, Minoli C, Gallazzi M, Domżalski M, Randelli P. Validation of a new topographic classification of bone marrow lesions in the knee: the six-letter system. Knee Surg Sports Traumatol Arthrosc. 2021;29:333–41.

    Article  PubMed  Google Scholar 

  17. Reddy AS, Frederick RW. Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am J Sports Med. 1998;26:415–9.

    Article  CAS  PubMed  Google Scholar 

  18. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, Hunter TB, Resnick DL. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skelet Radiol. 2008;37:423–31.

    Article  Google Scholar 

  19. Ringe JD, Dorst A, Faber H. Effective and rapid treatment of painful localized transient osteoporosis (bone marrow edema) with intravenous ibandronate. Osteoporos Int. 2005;16:2063–8.

    Article  CAS  PubMed  Google Scholar 

  20. Simon MJK, Barvencik F, Luttke M, Amling M, Mueller-Wohlfahrt H-W, Ueblacker P. Intravenous bisphosphonates and vitamin D in the treatment of bone marrow oedema in professional athletes. Injury. 2014;45:981–7.

    Article  PubMed  Google Scholar 

  21. Baier C, Schaumburger J, Götz J, Heers G, Schmidt T, Grifka J, Beckmann J. Bisphosphonates or prostacyclin in the treatment of bone-marrow oedema syndrome of the knee and foot. Rheumatol Int. 2013;33:1397–402.

    Article  CAS  PubMed  Google Scholar 

  22. Rolvien T, Schmidt T, Butscheidt S, Amling M, Barvencik F. Denosumab is effective in the treatment of bone marrow oedema syndrome. Injury. 2017;48:874–9.

    Article  PubMed  Google Scholar 

  23. Sun Q, Zhen G, Li TP, et al. Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. elife. 2021;10:e66532. https://doi.org/10.7554/eLife.66532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orth P, Cucchiarini M, Zurakowski D, Menger MD, Kohn DM, Madry H. Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo. Osteoarthr Cartil. 2013;21:614–24.

    Article  CAS  Google Scholar 

  25. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469:2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pisanu G, Cottino U, Rosso F, Blonna D, Marmotti AG, Bertolo C, Rossi R, Bonasia DE. Large osteochondral allografts of the knee: surgical technique and indications. Joints. 2018;6:42–53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Caro F, Bisicchia S, Amendola A, Ding L. Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature. Arthroscopy. 2015;31:757–65.

    Article  PubMed  Google Scholar 

  28. Stoker AM, Baumann CA, Stannard JP, Cook JL. Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts. J Knee Surg. 2018;31:314–20.

    Article  PubMed  Google Scholar 

  29. Oladeji LO, Stannard JP, Cook CR, Kfuri M, Crist BD, Smith MJ, Cook JL. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med. 2017;45:2797–803.

    Article  PubMed  Google Scholar 

  30. Ackermann J, Mestriner AB, Shah N, Gomoll AH. Effect of autogenous bone marrow aspirate treatment on magnetic resonance imaging integration of osteochondral allografts in the knee: a matched comparative imaging analysis. Arthroscopy. 2019;35:2436–44.

    Article  PubMed  Google Scholar 

  31. Wang D, Lin KM, Burge AJ, Balazs GC, Williams RJ 3rd. Bone marrow aspirate concentrate does not improve osseous integration of osteochondral allografts for the treatment of chondral defects in the knee at 6 and 12 months: a comparative magnetic resonance imaging analysis. Am J Sports Med. 2019;47:339–46.

    Article  PubMed  Google Scholar 

  32. Huddleston HP, Wong SE, Cregar WM, Haunschild ED, Alzein MM, Cole BJ, Yanke AB. Bone marrow lesions on preoperative magnetic resonance imaging correlate with outcomes following isolated osteochondral allograft transplantation. Arthroscopy. 2021;37:3487–97.

    Article  PubMed  Google Scholar 

  33. Müller PE, Niethammer TR. Editorial commentary: bone marrow lesion as a prognostic factor for osteochondral allograft transplantation of cartilage defects in the knee joint. Arthroscopy. 2021;37:3498–9.

    Article  PubMed  Google Scholar 

  34. Hede K, Christensen BB, Jensen J, Foldager CB, Lind M. Combined bone marrow aspirate and platelet-rich plasma for cartilage repair: two-year clinical results. Cartilage. 2021;13:937S–47S.

    Article  CAS  PubMed  Google Scholar 

  35. Smyth NA, Murawski CD, Fortier LA, Cole BJ, Kennedy JG. Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy. 2013;29:1399–409.

    Article  PubMed  Google Scholar 

  36. Huang G-S, Peng Y-J, Hwang DW, Lee H-S, Chang Y-C, Chiang S-W, Hsu Y-C, Liu Y-C, Lin M-H, Wang C-Y. Assessment of the efficacy of intra-articular platelet rich plasma treatment in an ACLT experimental model by dynamic contrast enhancement MRI of knee subchondral bone marrow and MRI T2 measurement of articular cartilage. Osteoarthr Cartil. 2021;29:718–27.

    Article  Google Scholar 

  37. Freitag J, Barnard A, Rotstein A. Photoactivated platelet-rich plasma therapy for a traumatic knee chondral lesion. BMJ Case Rep. 2012;2012:bcr2012006858. https://doi.org/10.1136/bcr-2012-006858.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lychagin A, Lipina M, Garkavi A, Islaieh O, Timashev P, Ashmore K, Kon E. Intraosseous injections of platelet rich plasma for knee bone marrow lesions treatment: one year follow-up. Int Orthop. 2021;45:355–63.

    Article  CAS  PubMed  Google Scholar 

  39. Kasik CS, Martinkovich S, Mosier B, Akhavan S. Short-term outcomes for the biologic treatment of bone marrow edema of the knee using bone marrow aspirate concentrate and injectable demineralized bone matrix. Sports Med Arthrosc Rehabil Ther Technol. 2019;1:e7–e14.

    Google Scholar 

  40. Hernigou P, Bouthors C, Bastard C, Flouzat Lachaniette CH, Rouard H, Dubory A. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. Int Orthop. 2021;45:391–9.

    Article  PubMed  Google Scholar 

  41. Aaron RK, Dyke JP, Mck Ciombor D, Ballon D, Lee J, Jung E, Tung GA. Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann N Y Acad Sci. 2007;1117:124–37.

    Article  PubMed  Google Scholar 

  42. Uchio Y, Ochi M, Adachi N, Nishikori T, Kawasaki K. Intraosseous hypertension and venous congestion in osteonecrosis of the knee. Clin Orthop Relat Res. 2001;384:217–23.

    Article  Google Scholar 

  43. Radke S, Rader C, Kenn W, Kirschner S, Walther M, Eulert J. Transient marrow edema syndrome of the hip: results after core decompression. A prospective MRI-controlled study in 22 patients. Arch Orthop Trauma Surg. 2003;123:223–7.

    Article  CAS  PubMed  Google Scholar 

  44. Berger CE, Kröner AH, Kristen K-H, Grabmeier GF, Kluger R, Minai-Pour MB, Leitha T, Engel A. Transient bone marrow edema syndrome of the knee: clinical and magnetic resonance imaging results at 5 years after core decompression. Arthroscopy. 2006;22:866–71.

    Article  PubMed  Google Scholar 

  45. Marulanda G, Seyler TM, Sheikh NH, Mont MA. Percutaneous drilling for the treatment of secondary osteonecrosis of the knee. J Bone Joint Surg Br. 2006;88-B:740–6.

    Article  Google Scholar 

  46. Szwedowski D, Dallo I, Irlandini E, Gobbi A. Osteo-core plasty: a minimally invasive approach for subchondral bone marrow lesions of the knee. Arthrosc Tech. 2020;9:e1773–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Faridi JA, Caldwell PE. Intraosseous bioplasty of the lateral femoral condyle of the knee for osteonecrosis. In: Biologic and nanoarthroscopic approaches in sports medicine. Cham: Springer International Publishing; 2021. p. 57–66.

    Chapter  Google Scholar 

  48. Potty AGR, Gupta A, Rodriguez HC, Stone IW, Maffulli N. Intraosseous bioplasty for a subchondral cyst in the lateral condyle of femur. J Clin Med Res. 2020;9(5):1358. https://doi.org/10.3390/jcm9051358.

    Article  Google Scholar 

  49. Elena N, Woodall BM, Lee K, McGahan PJ, Pathare NP, Shin EC, Chen JL. Intraosseous bioplasty for a chondral cyst in the lateral tibial plateau. Arthrosc Tech. 2018;7:e1149–56.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dallo I, D’Ambrosi R, Szwedowski D, Mobasheri A, Gobbi A. Minimally invasive cell-based therapy for symptomatic bone marrow lesions of the knee: a prospective clinical study at 1 year. Stem Cells Dev. 2022;31:488–97.

    Article  CAS  PubMed  Google Scholar 

  51. Cohen SB, Sharkey PF. Subchondroplasty for treating bone marrow lesions. J Knee Surg. 2016;29:555–63.

    PubMed  Google Scholar 

  52. Chua K, Kang JYB, Ng FDJ, Pang HN, Lie DTT, Silva A, Chang PCC. Subchondroplasty for bone marrow lesions in the arthritic knee results in pain relief and improvement in function. J Knee Surg. 2021;34:665–71.

    Article  PubMed  Google Scholar 

  53. Sharkey PF, Cohen SB, Leinberry CF, Parvizi J. Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop. 2012;41:413–7.

    PubMed  Google Scholar 

  54. Farr J II, Cohen SB. Expanding applications of the subchondroplasty procedure for the treatment of bone marrow lesions observed on magnetic resonance imaging. Oper Tech Sports Med. 2013;21:138–43.

    Article  Google Scholar 

  55. Bonadio MB, Giglio PN, Helito CP, Pécora JR, Camanho GL, Demange MK. Subchondroplasty for treating bone marrow lesions in the knee – initial experience. Rev Bras Ortop. 2017;52:325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Astur DC, de Freitas EV, Cabral PB, Morais CC, Pavei BS, Kaleka CC, Debieux P, Cohen M. Evaluation and management of subchondral calcium phosphate injection technique to treat bone marrow lesion. Cartilage. 2019;10:395–401.

    Article  CAS  PubMed  Google Scholar 

  57. Nairn LN, Subramaniam M, Ekhtiari S, Axelrod DE, Grant JA, Khan M. Safety and early results of subchondroplasty® for the treatment of bone marrow lesions in osteoarthritis: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2021;29:3599–607.

    Article  PubMed  Google Scholar 

  58. Davis AT, Byrd JM, Zenner JA, Frank DA, DeMeo PJ, Akhavan S. Short-term outcomes of the subchondroplasty procedure for the treatment of bone marrow edema lesions in patients with knee osteoarthritis. Orthop J Sports Med. 2015;3:2325967115S0012.

    Article  Google Scholar 

  59. Tran Y, Pelletier-Roy R, Merle G, Aubin C-É, Nault M-L. Subchondroplasty in the treatment of bone marrow lesion in early knee osteoarthritis: a systematic review of clinical and radiological outcomes. Knee. 2022;39:279–90.

    Article  PubMed  Google Scholar 

  60. Chatterjee D, McGee A, Strauss E, Youm T, Jazrawi L. Subchondral calcium phosphate is ineffective for bone marrow edema lesions in adults with advanced osteoarthritis. Clin Orthop Relat Res. 2015;473:2334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Niemeyer P, Salzmann G, Steinwachs M, Südkamp NP, Schmal H, Lenz P, Köstler W. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation. Arch Orthop Trauma Surg. 2010;130:977–83.

    Article  PubMed  Google Scholar 

  62. Blackman AJ, Smith MV, Flanigan DC, Matava MJ, Wright RW, Brophy RH. Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis. Am J Sports Med. 2013;41:1426–34.

    Article  PubMed  Google Scholar 

  63. Lattermann C, Jacobs CA, Reinke EK, Scaramuzza EA, Huston LJ, Dunn WR, Spindler KP. Are bone bruise characteristics and articular cartilage pathology associated with inferior outcomes 2 and 6 years after anterior cruciate ligament reconstruction? Cartilage. 2017;8:139–45.

    Article  PubMed  Google Scholar 

  64. Boffa A, Poggi A, Romandini I, Asunis E, Pizzuti V, Di Martino A, Zaffagnini S, Filardo G. Does bone marrow edema influence the clinical results of intra-articular platelet-rich plasma injections for knee osteoarthritis? J Clin Med Res. 2022;11:4414. https://doi.org/10.3390/jcm11154414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malige, A., Mandelbaum, B.R. (2024). Subchondral Bone Augmentation for Treatment of Bone Marrow Lesions. In: Sherman, S.L., Chahla, J., LaPrade, R.F., Rodeo, S.A. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-29430-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29430-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29429-7

  • Online ISBN: 978-3-031-29430-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics