Skip to main content

Phonon-Induced Thermal Properties

  • Reference work entry
  • First Online:
Semiconductor Physics
  • 2587 Accesses

Abstract

Phonons are responsible for all thermal properties of a solid, such as its heat content and transport. The anharmonic part of lattice oscillations causes thermal expansion. All these are integral contributions of the phonon spectrum; only at low temperatures, where part of the spectrum can be frozen-out, do they become partially spectrum selective. Thermal conductivity is determined by various mechanisms of phonon scattering. Most important are phonon-phonon and disordered-induced scattering. In nanostructures scattering at boundaries is dominant.

Karl W. Böer: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although the specific heat is measured more easily for constant pressure CP, the difference between CV and CP is very small for solids and is given by

    $$ {C}_P-{C}_V=\frac{9{\alpha}^2T{V}_m}{\kappa } $$
    (1)

    where α is the thermal expansion coefficient, κ is the isothermal compressibility, and Vm is the molar volume.

  2. 2.

    The specific heat is given here in Ws/(mol K) and should be distinguished from the values often given in tables in units of Ws/(cm3K) or Ws/(gK).

  3. 3.

    Exceptions like H2O or In are caused by rather unusual changes in the atomic structure of the solid. (Were it not for these changes in H2O, lakes would freeze from the bottom up.) Another important anomaly of αV is observed at very low temperatures (see end of Sect. 2.2 in this chapter).

  4. 4.

    In the Casimir model, phonons travel ballistically and scattering occurs only at the boundaries of the nanostructure; these are considered as perfect “phonon black bodies.”

  5. 5.

    The dominant phonon wavelength is in the range of \( {\Lambda}_{\mathrm{dom}}=1.48{v}_s\hslash /(kT); \) see Klitsner and Pohl 1987.

References

  • Adilov KA, Vakhabov DA, Zakirov AS, Igamberdyev KHT, Mamadalimov AT, Tursunov SHO, Khabibullaev PK (1986) Fiz Tverd Tela 28:1918 (The heat conductivity of nickel-doped n- and p-type silicon, in Russian)

    Google Scholar 

  • Afromowitz MA (1973) Thermal conductivity of Ga1-xAlxAs alloys. J Appl Phys 44:1292

    ADS  Google Scholar 

  • Akkermans E, Maynard R (1985) Weak localization and anharmonicity of phonons. Phys Rev B 32:7850

    ADS  Google Scholar 

  • Almond DP, Tam AC (1996) Photothermal science and techniques. Chapman & Hall, London

    Google Scholar 

  • Amer NM (1987) Characterization of optical and transport properties of semiconductors: a photothermal approach. Proc SPIE 794:11

    ADS  Google Scholar 

  • Anderson CL, Crowell CR (1972) Threshold energies for electron–hole pair production by impact ionization in semiconductors. Phys Rev B 5:2267

    ADS  Google Scholar 

  • Anderson AC, Wolfe JP (eds) (1986) Phonon scattering in condensed matter, vol V. Springer, Berlin

    Google Scholar 

  • Barron THK (1957) Grüneisen parameters for the equation of state of solids. Ann Phys (NY) 1:77

    ADS  Google Scholar 

  • Bera C, Mingo N, Volz S (2010) Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys Rev Lett 104:115502

    Google Scholar 

  • Berman R (1976) Thermal conductivity in solids. Claredon Press, Oxford

    Google Scholar 

  • Bodnar IV, Orlova NS (1985) X-ray study of the thermal expansion anisotropy in AgGaS2 and AgInS2 compounds over the temperature range from 80 to 650 K. Phys Stat Sol A 91:503

    ADS  Google Scholar 

  • Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal-conductivity of disordered crystals. Phys Rev B 46:6131

    ADS  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793

    ADS  Google Scholar 

  • Capinski WS, Maris HJ, Ruf T, Cardona M, Ploog K, Katzer DS (1999) Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B 59:8105

    ADS  Google Scholar 

  • Carlson RO, Slack GA, Silverman SJ (1965) Thermal conductivity of GaAs and GaAs1-xPx laser semiconductors. J Appl Phys 36:505

    ADS  Google Scholar 

  • Casimir HBG (1938) Note on the conduction of heat in crystals. Physica 5:495

    ADS  Google Scholar 

  • Challis LJ, Rampton VW, Watt AFG (1975) Phonon scattering in solids. Plenum Press, New York

    Google Scholar 

  • Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57:14958

    ADS  Google Scholar 

  • Chen X, Li C, Tian F, Gamage GA, Sullivan S, Zhou J, Broido D, Ren Z, Shi L (2019) Thermal expansion coefficient and lattice anharmonicity of cubic boron arsenide. Phys Rev Appl 11:064070

    Google Scholar 

  • Chen G, Tien CL (1993) Thermal conductivities of quantum well structures. J Thermophys Heat Transf 7:311

    Google Scholar 

  • Childs GE, Erick LJ, Powell RL (1973) Thermal conductivity of solids at room temperature and below, a review and compilation of literature. National Bureau of Standards Monograph, vol 131. National Bureau of Standards, Washington, DC

    Google Scholar 

  • Dames C, Chen G (2005) Thermal conductivity of nanostructured thermoelectric materials. In: Rowe DM (ed) Thermoelectrics handbook, macro to nano. CRC Press, Boca Raton, FL

    Google Scholar 

  • Daniels WB (1962) Low-temperature limit of Grüneisen’s gamma of germanium and silicon. Phys Rev Lett 8:3

    ADS  Google Scholar 

  • de Goër AM, Doulat J, Dreyfus B (1965) Conductibilité thermique de l’oxyde de béryllium de 1.5 a 300 K. J Nucl Mater 17:159 (Thermal conductivity of beryllium oxide from 1.5 to 300 K, in French)

    ADS  Google Scholar 

  • de Goër AM, Locatelli M, Nicolau IF (1982) Low-temperature heat transport in α-HgI2 single crystals. J Phys Chem Solids 43:311

    Google Scholar 

  • Debernardi A, Baroni S, Molinari E (1995) Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys Rev Lett 75:1819

    ADS  Google Scholar 

  • Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys (Lpz) 39:789 (On the theory of the specific heat, in German)

    ADS  MATH  Google Scholar 

  • Debye P (1914) Vorträge über kinetische Gastheorie. Teubner Verlag, Berlin (Lectures on the kinetic gas theory, in German)

    Google Scholar 

  • Drabble JR, Goldsmid HJ (1961) Thermal conduction in semiconductors. Pergamon Press, New York

    MATH  Google Scholar 

  • Dulong PL, Petit AT (1819) Sur quelques points importants de la theorie de la chaleur. Ann Chim Phys 10:399 (On some important points of the theory of heat, in French)

    Google Scholar 

  • Einstein A (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys (Lpz.) 22:180 and 800 (“Berichtigung”). (Planck’s theory of radiation and the theory of specific heat, in German)

    Google Scholar 

  • Garg J, Chen G (2013) Minimum thermal conductivity in superlattices: a first-principles formalism. Phys Rev B 87:140302

    ADS  Google Scholar 

  • Geballe TH, Hull GW (1958) Isotopic and other types of thermal resistance in germanium. Phys Rev 110:773

    ADS  Google Scholar 

  • Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys Rev 134:A1058

    ADS  Google Scholar 

  • Grüneisen E (1926) Handbuch der Physik, vol 10. Springer, Berlin, Handbook of Physics, in German

    Google Scholar 

  • Hahn KR, Melis C, Bernardini F, Colombo L (2021) Intrinsic thermoelectric figure of merit of bulk compositional SiGe alloys: a first-principles study. Phys Rev Mater 5:065403

    Google Scholar 

  • Heron JS, Fournier T, Mingo N, Bourgeois O (2009) Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett 9:1861

    ADS  Google Scholar 

  • Hiki Y (1981) Higher order elastic constants of solids. Ann Rev Mater Sci 11:51

    ADS  Google Scholar 

  • Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163

    ADS  Google Scholar 

  • Holland MG (1964) Phonon scattering in doped GaAs from magnetothermal conductivity studies. In: Hulin M (ed) Proceedings of 7th international conference on the physics of semiconductors, Dunod, pp 713–717

    Google Scholar 

  • Holt M, Wu Z, Hawoong Hong, Zschack P, Jemian P, Tischler J, Haydn Chen, Chiang TC (1999) Determination of phonon dispersions from x-ray transmission scattering: the example of silicon. Phys Rev Lett 83:3317

    ADS  Google Scholar 

  • Hsieh W-P, Losego MD, Braun PV, Shenogin S, Keblinski P, Cahill DG (2011) Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys Rev B 83:174205

    ADS  Google Scholar 

  • Igamberdiev KT, Mamadalimov AT, Khabibullaev PK (1983) Izv Akad Nauk Uzb SSR, Ser Fiz Mat 2:39 (in Russian)

    Google Scholar 

  • Joos G (1945) Lehrbuch der Theoretischen Physik. Akad. Verl. Gesellschaft, Leipzig (Textbook of Theoretical Physics, in German)

    MATH  Google Scholar 

  • Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74:3005

    Google Scholar 

  • Kang JS, Li M, Wu H, Nguyen H, Hu Y (2019) Basic physical properties of cubic boron arsenide. Appl Phys Lett 115:122103

    ADS  Google Scholar 

  • Kim DS, Smith HL, Niedziela JL, Li CW, Abernathy DL, Fultz B (2015) Phonon anharmonicity in silicon from 100 to 1500 K. Phys Rev B 91:014307

    ADS  Google Scholar 

  • Kittel C (1949) Interpretation of the thermal conductivity of glasses. Phys Rev 75:972

    ADS  Google Scholar 

  • Kittel C (1986) Introduction to solid state physics. Wiley, New York

    MATH  Google Scholar 

  • Klemens PG (1955) The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A 68:1113

    ADS  MATH  Google Scholar 

  • Klemens PG (1958) Thermal conductivity and lattice vibrational modes. In: Seitz F, Turnbull D (eds) Solid state physics, vol 7. Academic Press, New York

    Google Scholar 

  • Klemens PG (1986) Thermal expansion of composites. Int J Thermophys 7:197

    ADS  Google Scholar 

  • Klemens PG, Chu TK (1976) Thermal conductivity. Plenum Press, New York, pp 1–98

    Google Scholar 

  • Klitsner T, Pohl RO (1987) Phonon scattering at silicon crystal surfaces. Phys Rev B 36:6551

    ADS  Google Scholar 

  • Knaak W, Hauß T, Kummrow M, Meißner M (1986) Thermalization of ballistic phonon pulses in dielectric crystals below 1 K using time resolved thermometry. In: Anderson AC, Wolfe JP (eds) Phonon scattering in condensed matter, vol V. Springer, Berlin, p 174

    Google Scholar 

  • Kumar GS, Vandersande JW, Klistner T, Pohl RO, Slack GA (1985) Low-temperature heat transport by charge carriers in doped semiconductors. Phys Rev B 31:2157

    ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1958) Statistical physics (English translation by Peierls E, Peierls RF). Addison-Wesley, Cambridge, MA

    Google Scholar 

  • Leibfried G, Schlömann E (1963) Wärmeleitung in elektrisch isolierenden Kristallen. Nachr Akad Wiss Göttingen Kl (II)a 4:71 (1954); English translation AEC-tr-5892, 1 (1963). (Heat conduction in electrically insulating crystals, in German)

    Google Scholar 

  • Lencer D, Salinga M, Wuttig M (2011) Design rules for phase-change materials in data storage applications. Adv Mater 23:2030

    Google Scholar 

  • Li J, Zhou X, Liu Z (2020) Recent advances in photoactuators and their applications in intelligent bionic movements. Adv Optical Mater 8:2000886

    Google Scholar 

  • Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83:2934

    Google Scholar 

  • Lindsay L, Broido DA, Reinecke TL (2013) Ab initio thermal transport in compound semiconductors. Phys Rev B 87:165201

    Google Scholar 

  • Liu W, Asheghi M (2006) Thermal conductivity measurements of ultra-thin single crystal silicon layers. J Heat Transf 128:75

    Google Scholar 

  • Logachev YA, Vasilev LN (1973) Temperature dependence of the phonon thermal conductivity of Ge and Si and AIIIBV compounds at high temperatures. Fiz. Tverdogo Tela 15:1612

    Google Scholar 

  • Luckyanova MN, Garg J, Esfarjani K, Jandl A, Bulsara MT, Schmidt AJ, Minnich AJ, Chen S, Dresselhaus MS, Ren Z, Fitzgerald EA, Chen G (2012) Coherent phonon heat conduction in superlattices. Science 338:936

    Google Scholar 

  • Luk’yanov AY, Ral’chenko VG, Khomich AV, Serdtsev EV, Volkov PV, Savel’ev AV, Konov VI (2008) Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 μm. Quantum Electron 38:1171

    Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, Berlin

    Google Scholar 

  • Matsumoto DS, Anderson AC (1981) Effect of crosslinking on the low-temperature behavior of polybutadiene. J Non-cryst Solids 44:171

    ADS  Google Scholar 

  • McGaughey AJH, Jain A, Kim HY, Fu B (2019) Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J Appl Phys 125:011101

    ADS  Google Scholar 

  • Minnich AJ, Johnson JA, Schmidt AJ, Esfarjani K, Dresselhaus MS, Ka N, Chen G (2011) Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys Rev Lett 107:095901

    Google Scholar 

  • Mitra SS, Massa ME (1982) Lattice vibrations in semiconductors. In: Moss TS, Paul W (eds) Handbook on semiconductors, vol 1: Band theory and transport properties. North Holland, Amsterdam, pp 81–192

    Google Scholar 

  • Molina-Ruiz M, Jacks HC, Queen DR, Wang Q, Crandall RS, Hellman F (2020) Two-level systems and growth-induced metastability in hydrogenated amorphous silicon. Mater Res Express 7:095201

    ADS  Google Scholar 

  • Namjoshi KV, Mitra SS, Vetelino JF (1971) Simple shell-model calculation of lattice dynamics and thermal expansion of alkali halides. Phys Rev B 3:4398

    ADS  Google Scholar 

  • Novikova SI (1966) Thermal expansion. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 2. Academic Press, New York, pp 33–48

    Google Scholar 

  • Orbach R (1984) Dynamics of fractal structures. J Stat Phys 36:735

    ADS  MathSciNet  Google Scholar 

  • Parrott JE, Stuckes AD (1975) Thermal conductivity of solids. Pion, London

    Google Scholar 

  • Pässler R (2011) Non-Debye behaviours of heat capacities of cubic II–VI materials. J Phys Chem Sol 72:1296

    ADS  Google Scholar 

  • Patel CKN, Tam AC (1981) Pulsed optoacoustic spectroscopy of condensed matter. Rev Mod Phys 53:517

    Google Scholar 

  • Peierls RE (1929) Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann Phys (Lpz) 3:1055 (On the kinetic theory of thermal conductivity in crystals, in German)

    ADS  MATH  Google Scholar 

  • Peierls RE (1955) Quantum theory of solids. University Press, Oxford

    Google Scholar 

  • Pennington DM, Harris CB (1992) Dynamics of photothermal surface expansion and diffusivity using laser-induced holographic gratings. IEEE J Quantum Electron 28:2523

    ADS  Google Scholar 

  • Phillips WA (1987) Two-level states in glasses. Rep Prog Phys 50:1657

    Google Scholar 

  • Pike NA, Løvvik OM (2019) Calculation of the anisotropic coefficients of thermal expansion: A first-principles approach. Computational Mater Sci 167:257

    Google Scholar 

  • Pohl RO, Love WF, Stevens RB (1974) Lattice vibrations in non-crystalline solids. In: Stuke J, Brenig W (eds) Proceedings of 5th international conference on amorphous and liquid semiconductors. Taylor and Francis, London, p 1121

    Google Scholar 

  • Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147

    Google Scholar 

  • Qian X, Zhou J, Chen G (2021) Phonon-engineered extreme thermal conductivity materials. Nat Mater 20:1188

    Google Scholar 

  • Ravichandran J, Yadav A, Cheaito R, Rossen PB, Soukiassian A, Suresha SJ, Duda JC, Foley BM, Lee C-H, Zhu Y, Lichtenberger AW, Moore JE, Muller DA, Schlom DG, Hopkins PE, Majumdar A, Ramesh R Zurbuchen MA (2014) Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater 13:168

    Google Scholar 

  • Radhakrishnan V, Roy KP, Sharma PC (1982) Proc Nucl Phys Solid State Phys Symp 25C:314

    Google Scholar 

  • Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. Wiley, Chichester

    Google Scholar 

  • Rowe DM, Bhandari CM (1986) Preparation and thermal conductivity of doped semiconductors. Prog Crystal Growth Charact 13:233

    Google Scholar 

  • Roy R, Agrawal DK (1985) Successful design of new very low thermal expansion ceramics. Mater Res Soc Symp Proc 40:83

    Google Scholar 

  • Schirmacher W (2006) Thermal conductivity of glassy materials and the “boson peak”. Europhys Lett 73:892

    Google Scholar 

  • Simkin MV, Mahan GD (2000) Minimum thermal conductivity of superlattices. Phys Rev Lett 84:927

    Google Scholar 

  • Slack GA (1979) The thermal conductivity of nonmetallic crystals. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol 34. Academic Press, New York, pp 1–71

    Google Scholar 

  • Smith RA (1978) Semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  • Soma T, Sato J, Matsuo H (1982) Thermal expansion coefficient of GaAs and InP. Sol State Commun 42:889

    Google Scholar 

  • Sproull RL, Moss M, Weinstock H (1959) Effect of dislocations on the thermal conductivity of lithium fluoride. J Appl Phys 30:334

    ADS  Google Scholar 

  • Steigmeier EF (1969) Thermal conductivity of semi-conducting materials. In: Tye RP (ed) Thermal conductivity. Academic Press, London/New York

    Google Scholar 

  • Stephens RB (1973) Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys Rev B 8:2896

    ADS  Google Scholar 

  • Svenson EC, Brockhouse BN, Rowe JM (1967) Crystal dynamics of copper. Phys Rev 115:619

    ADS  Google Scholar 

  • Tam AC (1986) Applications of photoacoustic sensing techniques. Rev Mod Phys 58:381

    ADS  Google Scholar 

  • Torchia GA, Schinca D, Khaidukov NM, Tocho JO (2002) The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals. Opt Mater 20:301

    ADS  Google Scholar 

  • Touloukian YS, Liley PE, Saxena SC (1970) Thermal conductivity; nonmetallic liquids and gases. IFI/Plenum Press, New York

    Google Scholar 

  • Tritt TM (2004) Thermal conductivity: theory, properties, and applications. Kluwer/Plenum Publishers, New York

    Google Scholar 

  • Vakhabov DA, Zakirov AS, Igamberdiev KT, Mamadalimov AT, Tursunov SO, Khabibullaev PK (1985) Fiz Tverd Tela 27:3420 (Thermoconductivity and temperature-conductivity of silicon doped with Se and Te. in Russian)

    Google Scholar 

  • Valentiner S, Wallot J (1915) Über die Abhängigkeit des Ausdehnungskoeffizienten fester Körper von der Temperatur, Ann. Physik 46:837 (On the dependence of the expansion coefficient of solids on the temperature, in German)

    Google Scholar 

  • Vandersande JW (1980) Phonon scattering by nitrogen aggregates in intermediate type natural diamonds. In: Maris HJ (ed) Phonon scattering in condensed matter. Plenum Press, New York, pp 247–250

    Google Scholar 

  • Vandersande JW, Pohl RO (1982) Negligible effect of grain boundaries on the thermal conductivity of rocks. Geophys Res Lett 9:820

    ADS  Google Scholar 

  • Vandersande JW, Wood C (1986) The thermal conductivity of insulators and semiconductors. Contemp Phys 27:117

    ADS  Google Scholar 

  • Venkatasubramanian R (2000) Lattice thermal conductivity and phonon localization like behavior in superlattice structures. Phys Rev B 61:3091

    ADS  Google Scholar 

  • Walton D (1967) Scattering of phonons by a square-well potential and the effect of colloids on the thermal conductivity. I. Experimental. Phys Rev 157:720

    ADS  Google Scholar 

  • Wang Z, Alaniz JE, Jang W, Garay JE, Dames C (2011) Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett 11:2206

    Google Scholar 

  • Waseda Y, Ohta H (1987) Current views on thermal conductivity and diffusivity measurements of oxide melts at high temperature. Sol State Ionics 22:263

    Google Scholar 

  • Weißmantel C, Hamann C (1995) Grundlagen der Festkörperphysik. J.A. Barth Verlag, Heidelberg (Fundamentals of Solid State Physics, in German)

    Google Scholar 

  • White TJ, Davis JH, Walter HU (1975) Thermal expansion and Grüneisen parameters of InBi. J Appl Phys 46:11

    ADS  Google Scholar 

  • White TJ (ed) (2017) Photomechanical materials, composites, and systems. Wiley, Hoboken.

    Google Scholar 

  • Yao T (1987) Thermal properties of AlAs/GaAs superlattices. Appl Phys Lett 51:1798

    ADS  Google Scholar 

  • Yu CC, Freeman JJ (1986) The thermal conductivity and specific heat of glasses. In: Anderson AC, Wolfe JP (eds) Phonon scattering in condensed matter, vol V. Springer, Berlin, p 20

    Google Scholar 

  • Yang F, Dames C (2013) Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys Rev B 87:035437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2023). Phonon-Induced Thermal Properties. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-18286-0_5

Download citation

Publish with us

Policies and ethics