Skip to main content

Virtual Power Plants and Integrated Energy System: Current Status and Future Prospects

  • Reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

The power system is undergoing a digitalization, decarbonization, and decentralization. Economic incentives along with resiliency and reliability concerns are partly driving the transition. In the process of decentralization, local energy markets are forming at various places. A virtual power plant (VPP) is a by-product of this digitalization capitalizing on the opportunity to further promote renewable resources, demand-side flexibility, and sector coupling. A VPP enables resilient operation of power system while assembling small- to large-scale generation units and demand-side flexibility. Specifically, during the pandemic uncertainty, virtual work meets virtual power plants. A VPP has two both cyber and physical components. On one side, the physical component presents the operational challenges in terms of security, stability, reliability, and efficiency. On the other side, the cyber component introduces the challenges on communication, computation, security, and privacy. A VPP synthesizes synergies between the cyber and physical components, thereby harnessing the potential in terms of enhancing energy efficiency and reducing the cost. The objective of this chapter is to introduce the virtual power plant and integrated energy system with associated concepts, terminology, and relation thereof. The secondary objective is to categorize the key concepts while highlighting subsequent issues in planning, operations, and control of a VPP with an integrated energy system. Moreover, this chapter knits together the concepts and challenges in realizing virtual power plants with integrated energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A4 large scale storage options under special consideration of 6 × 15 mw battery example, http://www.eqmagpro.com/wp-content/uploads/2017/06/VGB-Congress_Benesch.pdf. Accessed on 21 Oct 2020

  • K. Aduda, T. Labeodan, W. Zeiler, G. Boxem, Demand side flexibility coordination in office buildings: a framework and case study application. Sustain. Cities Soc. 29, 139–158 (2017)

    Article  Google Scholar 

  • A. Ajanovic, A. Hiesl, R. Haas, On the role of storage for electricity in smart energy systems. Energy 200 117473 (2020)

    Article  Google Scholar 

  • A. Alahyari, M. Ehsan, M. Moghimi, Managing distributed energy resources (DERs) through virtual power plant technology (VPP): a stochastic information-gap decision theory (IGDT) approach. Iranian J. Sci. Technol. Trans. Electric. Eng. 44(1), 279–291 (2020). https://doi.org/10.1007/s40998-019-00248-w

    Article  Google Scholar 

  • A. Aldegheishem, R. Bukhsh, N. Alrajeh, N. Javaid, FaaVPP: fog as a virtual power plant service for community energy management. Futur. Gener. Comput. Syst. 105, 675–683 (2020)

    Article  Google Scholar 

  • A.A. Alkahtani, S.T. Alfalahi, A.A. Athamneh, A.Q. Al-Shetwi, M.B. Mansor, M. Hannan, V.G. Agelidis, Power quality in microgrids including supraharmonics: issues, standards, and mitigations. IEEE Access 8, 127104–127122 (2020)

    Article  Google Scholar 

  • A.Q. Al-Shetwi, M.Z. Sujod, Modeling and control of grid-connected photovoltaic power plant with fault ride-through capability. J. Solar Energy Eng. 140(2), 1–8 (2018)

    Article  Google Scholar 

  • A.Q. Al-Shetwi, M. Hannan, K.P. Jern, A.A. Alkahtani, A. PG Abas, Power quality assessment of grid-connected pv system in compliance with the recent integration requirements. Electronics 9(2), 366 (2020)

    Google Scholar 

  • M.A. Ancona, M. Bianchi, L. Branchini, A. De Pascale, F. Melino, A. Peretto, Low temperature district heating networks for complete energy needs fulfillment. Int. J. Sustain. Energy Plan. Manag. 24, 33–42 (2019)

    Google Scholar 

  • K.E. Antoniadou-Plytaria, I.N. Kouveliotis-Lysikatos, P.S. Georgilakis, n.d. Hatziargyriou, Distributed and decentralized voltage control of smart distribution networks: models, methods, and future research. IEEE Trans. Smart Grid 8(6), 2999–3008 (2017)

    Google Scholar 

  • S.G. Argade, V. Aravinthan, I.E. Büyüktahtakın, S. Joseph, Performance and consumer satisfaction-based bi-level tariff scheme for EV charging as a VPP. IET Gener. Transm. Distrib. 13(11), 2112–2122 (2018)

    Article  Google Scholar 

  • P. Asmus, Microgrids, virtual power plants and our distributed energy future. Electric. J. 23(10), 72–82 (2010)

    Article  Google Scholar 

  • S. Babaei, C. Zhao, L. Fan, A data-driven model of virtual power plants in day-ahead unit commitment. IEEE Trans. Power Syst. 34(6), 5125–5135 (2019)

    Article  Google Scholar 

  • L. Bai, F. Li, H. Cui, T. Jiang, H. Sun, J. Zhu, Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl. Energy 167, 270–279 (2016). https://doi.org/10.1016/j.apenergy.2015.10.119

    Article  Google Scholar 

  • R. Boampong, D.P. Brown, On the benefits of behind-the-meter rooftop solar and energy storage: the importance of retail rate design. Energy Econ. 86, 104682 (2020)

    Article  Google Scholar 

  • C. Bordin, A. Gordini, D. Vigo, An optimization approach for district heating strategic network design. Eur. J. Oper. Res. 252(1), 296–307 (2016)

    Article  Google Scholar 

  • C. Bordin, A. Håkansson, S. Mishra, Smart energy and power systems modelling: an IOT and cyber-physical systems perspective, in the context of energy informatics. Proc. Comput. Sci. 176, 2254–2263 (2020)

    Article  Google Scholar 

  • T. Brown, D. Schlachtberger, A. Kies, S. Schramm, M. Greiner, Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 160, 720–739 (2018). arXiv:1801.05290, https://doi.org/10.1016/j.energy.2018.06.222

  • Building a battery power plant wemag – aggreko, https://www.aggreko.com/en-pg/case-studies/utilities/building-a-battery-power-plant-wemag#challenge. Accessed on 21 Oct 2020

  • Centrica’s restore business launches 32 mw ‘virtual power plant’ in Belgium – centrica plc, https://www.centrica.com/news/centricas-restore-business-launches-32-mw-virtual-power-plant-belgium. Accessed on 21 Oct 2020

  • P. Chaudhari, P. Rane, A. Bawankar, P. Shete, K. Kalange, A. Moghe, J. Panda, A. Kadrolkar, K. Gaikwad, N. Bhor et al., Design and implementation of statcom for reactive power compensation and voltage fluctuation mitigation in microgrid, in 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) (IEEE, 2015), pp. 1–5

    Google Scholar 

  • S.T. Chavhan, C. Bhattar, P.V. Koli, V.S. Rathod, Application of statcom for power quality improvement of grid integrated wind mill, in 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2015), pp. 1–7

    Google Scholar 

  • C.-I. Chen, Y.-C. Chen, C.-N. Chen, A high-resolution technique for flicker measurement in power quality monitoring, in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) (IEEE, 2013), pp. 528–533

    Google Scholar 

  • K.J. Chua, S.K. Chou, W. Yang, Advances in heat pump systems: a review. Appl. Energy 87(12), 3611–3624 (2010)

    Article  Google Scholar 

  • e2m announces strategic partnership with swytch to collaborate on proof of concept pilot – with e2m, https://www.e2m.energy/en/news-entry/Strategic-Partnership-with-Swytch.html. Accessed on 21 Oct 2020

  • Edf offers 866 mw at VPP auction, no additional power tenders on horizon – icis, https://www.icis.com/explore/resources/news/2007/11/29/9300807/edf-offers-866-mw-at-vpp-auction-no-additional-power-tenders-on-horizon/. Accessed on 21 Oct 2020

  • N. Edomah, Effects of voltage sags, swell and other disturbances on electrical equipment and their economic implications, in IEEE Proceedings of 20th International Conference on Electricity Distribution (IET, 2009), pp. 1–4

    Google Scholar 

  • K. El Bakari, W.L. Kling, Virtual power plants: an answer to increasing distributed generation, in IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe (2010). https://doi.org/10.1109/ISGTEUROPE.2010.5638984

    Google Scholar 

  • M. Emarati, F. Keynia, M. Rashidinejad, A two-stage stochastic programming framework for risk-based day-ahead operation of a virtual power plant. Int. Trans. Electric. Energy Syst. 30(3) (2020). https://doi.org/10.1002/2050-7038.12255

  • Enel increases ‘virtual power plant’ to 157 mw – Vermont business magazine, https://vermontbiz.com/news/2018/march/01/enel-increases-virtual-power-plant-157mw. Accessed on 21 Oct 2020

  • Engie, kiwi power partner on virtual power plants in US – s&p global market intelligence, https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/engie-kiwi-power-partner-on-virtual-power-plants-in-us-59480758. Accessed on 21 Oct 2020

  • E.on and thyssenkrupp bring hydrogen to the electric market – energy live news, https://www.en ergylivenews.com/2020/06/30/e-on-and-thyssenkrupp-bring-hydrogen-to-the-electric-market/. Accessed on 21 Oct 2020

  • Evegen virtual power plant, https://www.evergen.com.au/. Accessed on 21 Oct 2020

  • First 5 mw virtual power plant from major utility origin gets funding in victoria, Australia, https://www.energy-storage.news. Accessed on 21 Oct 2020

  • J. Freeman, I. Guarracino, S.A. Kalogirou, C.N. Markides, A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl. Thermal Eng. 127, 1543–1554 (2017)

    Article  Google Scholar 

  • G. Fridgen, R. Keller, M.-F. Körner, M. Schöpf, A holistic view on sector coupling. Energy Policy 147, 111913 (2020)

    Article  Google Scholar 

  • I. Gerami Moghaddam, Scheduling a smart energy hub-based virtual power plant using benders decomposition to considering power system constraints. Int. Trans. Electric. Energy Syst. 28(10), e2608 (2018)

    Google Scholar 

  • A. Ghosh, G. Ledwich, A unified power quality conditioner (UPQC) for simultaneous voltage and current compensation. Electric Power Syst. Res. 59(1), 55–63 (2001)

    Article  Google Scholar 

  • C. Goebel, H.-A. Jacobsen, V. del Razo, C. Doblander, J. Rivera, J. Ilg, C. Flath, H. Schmeck, C. Weinhardt, D. Pathmaperuma et al., Energy Inf. Bus. Inf. Syst. Eng. 6(1), 25–31 (2014)

    Article  Google Scholar 

  • D. Graovac, V. Katic, A. Rufer, Power quality problems compensation with universal power quality conditioning system. IEEE Trans. Power Delivery 22(2), 968–976 (2007)

    Article  Google Scholar 

  • A. Hariri, M.O. Faruque, Impacts of distributed generation on power quality, in 2014 North American Power Symposium (NAPS) (IEEE, 2014), pp. 1–6

    Google Scholar 

  • A. Hariri, M.O. Faruque, R. Soman, R. Meeker, Impacts and interactions of voltage regulators on distribution networks with high pv penetration, in 2015 North American Power Symposium (NAPS) (IEEE, 2015), pp. 1–6

    Google Scholar 

  • A. Hauer, Storage technology issues and opportunities, international low-carbon energy technology platform, in, Proceedings of the Strategic and Cross-Cutting Workshop “Energy Storage—Issues and Opportunities”, Paris, vol. 15 (2011)

    Google Scholar 

  • R. Hemmati, H. Saboori, S. Saboori, Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework. Energy 113, 762–775 (2016). https://doi.org/10.1016/ j.energy.2016.07.089

    Article  Google Scholar 

  • A. Honrubia-Escribano, T. García-Sánchez, E. Gómez-Lázaro, E. Muljadi, A. Molina-Garcia, Power quality surveys of photovoltaic power plants: characterisation and analysis of grid-code requirements. IET Renew. Power Gener. 9(5), 466–473 (2015)

    Article  Google Scholar 

  • E. Hossain, M.R. Tür, S. Padmanaban, S. Ay, I. Khan, Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. IEEE Access 6, 16816–16833 (2018)

    Article  Google Scholar 

  • K. Ilango, A. Bhargav, A. Trivikram, P. Kavya, G. Mounika, M.G. Nair, Power quality improvement using statcom with renewable energy sources, in 2012 IEEE 5th India International Conference on Power Electronics (IICPE) (IEEE, 2012), pp. 1–6

    Google Scholar 

  • S.-I. Inage, Prospects for large-scale energy storage in decarbonised power grids. Int. Energy Agency 3(4), 125 (2009)

    Google Scholar 

  • M. Jadidbonab, B. Mohammadi-Ivatloo, M. Marzband, P. Siano, Short-term self-scheduling of virtual energy hub plant within thermal energy market. IEEE Trans. Ind. Electron. 1 (2020). https://doi.org/10.1109/tie.2020.2978707

  • J.-P. Jimenez-Navarro, K. Kavvadias, F. Filippidou, M. Pavičević, S. Quoilin, Coupling the heating and power sectors: the role of centralised combined heat and power plants and district heat in a European decarbonised power system. Appl. Energy 270, 115134 (2020)

    Article  Google Scholar 

  • J.T. Johnson, Design and evaluation of a secure virtual power plant. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017)

    Google Scholar 

  • M. Kesler, E. Ozdemir, Synchronous-reference-frame-based control method for upqc under unbalanced and distorted load conditions. IEEE Trans. Ind. Electron. 58(9), 3967–3975 (2010)

    Article  Google Scholar 

  • V. Khadkikar, Enhancing electric power quality using UPQC: a comprehensive overview. IEEE Trans. Power Electron. 27(5), 2284–2297 (2011)

    Article  Google Scholar 

  • V. Khadkikar, A. Chandra, A. Barry, T. Nguyen, Analysis of power flow in UPQC during voltage sag and swell conditions for selection of device ratings, in 2006 Canadian Conference on Electrical and Computer Engineering (IEEE, 2006), pp. 867–872

    Google Scholar 

  • J. Kiviluoma, S. Heinen, H. Qazi, H. Madsen, G. Strbac, C. Kang, N. Zhang, D. Patteeuw, T. Naegler, Harnessing flexibility from hot and cold: heat storage and hybrid systems can play a major role. IEEE Power Energy Mag. 15(1), 25–33 (2017)

    Article  Google Scholar 

  • A. Kulmala, S. Repo, P. Järventausta, Coordinated voltage control in distribution networks including several distributed energy resources. IEEE Trans. Smart Grid 5(4), 2010–2020 (2014)

    Article  Google Scholar 

  • T.-L. Lee, S.-H. Hu, Y.-H. Chan, D-statcom with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed-generation systems. IEEE Trans. Ind. Electron. 60(4), 1417–1428 (2011)

    Article  Google Scholar 

  • S. Lehnhoff, A. Nieße, Recent trends in energy informatics research. IT-Inf. Technol. 59(1), 1–3 (2017)

    Google Scholar 

  • P. Li, Y. Liu, H. Xin, X. Jiang, A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans. Ind. Inform. 14(10), 4343–4352 (2018)

    Article  Google Scholar 

  • Limejump gets all clear to chase big six in UK grid balancing market – rethink, https://rethi- nkresearch.biz/articles/limejump-gets-all-clear-to-chase-big-six-in-uk-grid-balancing-market/. Accessed on 21 Oct 2020

  • L. Lin, X. Guan, Y. Peng, N. Wang, S. Maharjan, T. Ohtsuki, Deep reinforcement learning for economic dispatch of virtual power plant in internet of energy. IEEE Internet Things J. 7, 6288–6301 (2020)

    Article  Google Scholar 

  • X. Liu, A. Aichhorn, L. Liu, H. Li, Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans. Smart Grid 3(2), 897–906 (2012)

    Article  Google Scholar 

  • J. Lizana, C. Bordin, T. Rajabloo, Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by organic Rankine cycle. J. Energy Storage 29, 101367 (2020)

    Article  Google Scholar 

  • J. Lu, X. Zheng, A. Gharaei, K. Kalaboukas, D. Kiritsis, Cognitive twins for supporting decision-makings of internet of things systems, in Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing (Springer, 2020), pp. 105–115

    Google Scholar 

  • C. Mateu-Royo, S. Sawalha, A. Mota-Babiloni, J. Navarro-Esbrí, High temperature heat pump integration into district heating network. Energy Convers. Manag. 210, 112719 (2020)

    Article  Google Scholar 

  • S. Mishra, C. Bordin, A. Tomasgard, I. Palu, A multi-agent system approach for optimal microgrid expansion planning under uncertainty. Int. J. Electric. Power Energy Syst. 109, 696–709 (2019)

    Article  Google Scholar 

  • ‘modelling electricity demand the key’ as UK comes out of lockdown: Kiwi power – s&p global platts, https://www.spglobal.com. Accessed on 21 Oct 2020

  • Moixa to build virtual power plant as first phase of UK smart energy project – pv magazine international, https://www.moixa.com/. Accessed on 21 Oct 2020

  • M. Molinas, J.A. Suul, T. Undeland, Low voltage ride through of wind farms with cage generators: statcom versus SVC. IEEE Trans. Power Electron. 23(3), 1104–1117 (2008)

    Article  Google Scholar 

  • J.M. Morales, A.J. Conejo, H. Madsen, P. Pinson, M. Zugno, Integrating Renewables in Electricity Markets: Operational Problems, vol. 205 (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  • Navigant research names autogrid as #1 virtual power plant platform provider in 2020 – autogrid, https://www.auto-grid.com/products/virtual-power-plant/. Accessed on 21 Oct 2020

  • Next kraftwerke connects 2 mw battery to its VPP in Belgium – pv magazine international, https://www.pv-magazine.com/2018/07/13/next-kraftwerke-connects-2-mw-battery-to-its-vpp-in-belgium/. Accessed on 21 Oct 2020

  • Next kraftwerke records strong portfolio growth in 2017, https://www.next-kraftwerke.com/news/next-kraftwerke-records-strong-portfolio-growth-in-2017. Accessed on 21 Oct 2020

  • H.T. Nguyen, L.B. Le, Z. Wang, A bidding strategy for virtual power plants with the intraday demand response exchange market using the stochastic programming. IEEE Trans. Ind. Appl. 54(4), 3044–3055 (2018)

    Article  Google Scholar 

  • Open energi – dynamic demand 2.0 distributed energy platform, https://www.openenergi.com/. Accessed on 21 Oct 2020

  • G. Papaefthymiou, K. Dragoon, Towards 100% renewable energy systems: uncapping power system flexibility. Energy Policy 92, 69–82 (2016). https://doi.org/10.1016/j.enpol.2016. 01.025

    Article  Google Scholar 

  • T. Pavleska, H. Aranha, M. Masi, G.P. Sellitto, Drafting a cybersecurity framework profile for smart grids in EU: A goal-based methodology, in European Dependable Computing Conference (Springer, 2020), pp. 143–155

    Google Scholar 

  • J.S. Pereira, J.B. Ribeiro, R. Mendes, G.C. Vaz, J.C. André, Orc based micro-cogeneration systems for residential application–a state of the art review and current challenges. Renew. Sustain. Energy Rev. 92, 728–743 (2018)

    Article  Google Scholar 

  • Pge program will transform hundreds of homes into a virtual power plant – news releases – pge, https://www.portlandgeneral.com. Accessed on 21 Oct 2020

  • G. Plancke, K. De Vos, R. Belmans, A. Delnooz, Virtual power plants: definition, applications and barriers to the implementation in the distribution system, in International Conference on the European Energy Market, EEM, Aug 2015 (IEEE Computer Society, 2015). https://doi.org/ 10.1109/EEM.2015.7216693

    Book  Google Scholar 

  • D. Pudjianto, C. Ramsay, G. Strbac, Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 1(1), 10–16 (2007). https://doi.org/10.1049/iet-rpg:20060023

    Article  Google Scholar 

  • Quinbrook invests in flexible generation, grid support and demand response, https://www.quinbrook.com. Accessed on 21 Oct 2020

  • D. Ranamuka, A. Agalgaonkar, K. Muttaqi, Online voltage control in distribution systems with multiple voltage regulating devices. IEEE Trans. Sustain. Energy 5(2), 617–628 (2013)

    Article  Google Scholar 

  • D. Ranamuka, A.P. Agalgaonkar, K.M. Muttaqi, Examining the interactions between dg units and voltage regulating devices for effective voltage control in distribution systems. IEEE Trans. Ind. Appl. 53(2), 1485–1496 (2016)

    Article  Google Scholar 

  • D. Ranamuka, A.P. Agalgaonkar, K.M. Muttaqi, Examining the interactions between dg units and voltage regulating devices for effective voltage control in distribution systems. IEEE Trans. Ind. Appl. 53(2), 1485–1496 (2017)

    Article  Google Scholar 

  • T.B. Rasmussen, G. Yang, A.H. Nielsen, Z. Dong, A review of cyber-physical energy system security assessment, in 2017 IEEE Manchester PowerTech (IEEE, 2017), pp. 1–6

    Google Scholar 

  • P.K. Ray, S.R. Mohanty, N. Kishor, Classification of power quality disturbances due to environmental characteristics in distributed generation system. IEEE Trans. Sustain. Energy 4(2), 302–313 (2012)

    Article  Google Scholar 

  • P.K. Ray, S.R. Mohanty, N. Kishor, J.P. Catalão, Optimal feature and decision tree-based classification of power quality disturbances in distributed generation systems. IEEE Trans. Sustain. Energy 5(1), 200–208 (2013)

    Article  Google Scholar 

  • repowering-clean-sunrun.pdf, https://www.sunrun.com/sites/default/files/repowering-clean-sunrun.pdf. Accessed on 21 Oct 2020

  • M. Robinius, A. Otto, P. Heuser, L. Welder, K. Syranidis, D.S. Ryberg, T. Grube, P. Markewitz, R. Peters, D. Stolten, Linking the power and transport sectors – part 1: The principle of sector coupling. Energies 10(7), 956 (2017)

    Google Scholar 

  • J.M. Rozanec, L. Jinzhi, Towards actionable cognitive digital twins for manufacturing, in International Workshop On Semantic Digital Twins (SeDiT 2020), Greece (2020)

    Google Scholar 

  • Sa virtual power plant – tesla Australia, https://www.tesla.com/en_au/sa-virtual-power-plant. Accessed on 21 Oct 2020

  • O. Sadeghian, A. Oshnoei, R. Khezri, S. Muyeen, Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. J. Energy Storage 31, 101732 (2020)

    Article  Google Scholar 

  • R. Saint, N. Friedman, The application guide for distributed generation interconnection-the nreca guide to IEEE 1547, in 2002 Rural Electric Power Conference. Papers Presented at the 46th Annual Conference (Cat. No. 02CH37360) (IEEE, 2002), pp. D2–1

    Google Scholar 

  • I. Sarbu, C. Sebarchievici, A comprehensive review of thermal energy storage. Sustainability 10(1), 191 (2018)

    Google Scholar 

  • Simply energy virtual power plant – Australian renewable energy agency, https://arena.gov.au/projects/simply-energy-virtual-power-plant-vpp/. Accessed on 21 Oct 2020

  • Software for virtual power plants powered by residential solar-plus-storage, https://www.pv-magazine.com/. Accessed on 21 Oct 2020

  • M. Sony, Lean six sigma in the power sector: frog into prince. Benchmarking: Int. J. 26, 356– 370 (2019)

    Article  Google Scholar 

  • Springer, Aims and scope of energy informatics journal, https://energyinformatics.springeropen.com, online; Accessed 2020

  • Statkraft unveils 1gw virtual power plant in UK, intends to double capacity by summer – current news, https://www.statkraft.com/newsroom/news-and-stories/archive/2020/vpp-balancing-services/. Accessed on 21 Oct 2020

  • Storage and the rise of the virtual power plant – energy storage news, https://www.energy-storage.news/blogs/storage-and-the-rise-of-the-virtual-power-plant. Accessed on 21 Oct 2020

  • R. Thallam, G. Heydt, Power acceptability and voltage sag indices in the three phase sense, in 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), vol. 2 (IEEE, 2000), pp. 905–910

    Google Scholar 

  • UK’s largest independent distributed energy supplier sold for £216m, https://www.eenewspower.com/news/uks-largest-independent-distributed-energy-supplier-sold-ps216m. Accessed on 21 Oct 2020

  • A. Van der Veen, M. Van der Laan, H. De Heer, E. Klaassen, W. Van den Reek, Flexibility value chain (2018)

    Google Scholar 

  • S.K. Venkatachary, J. Prasad, R. Samikannu, A. Alagappan, L.J.B. Andrews, Cybersecurity infrastructure challenges in IoT based virtual power plants. J. Stat. Manag. Syst. 23(2), 263–276 (2020)

    Google Scholar 

  • F.A. Viawan, D. Karlsson, Combined local and remote voltage and reactive power control in the presence of induction machine distributed generation. IEEE Trans. Power Syst. 22(4), 2003–2012 (2007)

    Article  Google Scholar 

  • VPP, Why Ecotricity has entered the flexibility market – theenergyst.com, https://theenergyst.com/ecotricity-enters-flexibility-market/. Accessed on 21 Oct 2020

  • VPP.pdf, https://www.enbala.com/wp-content/uploads/2018/01/VPP.pdf. Accessed on 21 Oct 2020

  • S. Vukmirović, A. Erdeljan, F. Kulić, S. Luković, Software architecture for smart metering systems with virtual power plant, in MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference (IEEE, 2010), pp. 448–451

    Google Scholar 

  • W.a. community virtual power plant confirms $50m Swiss investment – one step off the grid, https://onestepoffthegrid.com.au/w-a-community-virtual-power-plant-confirms-50m-swiss-investment/. Accessed on 21 Oct 2020

  • R. Walling, R. Saint, R.C. Dugan, J. Burke, L.A. Kojovic, Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Delivery 23(3), 1636–1644 (2008)

    Article  Google Scholar 

  • What is a virtual power plant? https://www.solarpowerworldonline.com/2017/09/virtual-power-plant/. Accessed on 21 Oct 2020

  • M. Wickert, S. Liebehentze, A. Zündorf, Experience report: first steps towards a microservice architecture for virtual power plants in the energy sector, in Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  • S. Wong, J.-P. Pinard, Opportunities for smart electric thermal storage on electric grids with renewable energy. IEEE Trans. Smart Grid 8(2), 1014–1022 (2016)

    Google Scholar 

  • Y. Wong, L. Lai, S. Gao, K. Chau, Stationary and mobile battery energy storage systems for smart grids, in 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT) (IEEE, 2011), pp. 1–6

    Google Scholar 

  • Q.-H. Wu, J. Zheng, Z. Jing, X. Zhou, Large-Scale Integrated Energy Systems. Energy Systems in Electrical Engineering (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-6943-8

  • Y. Yohanis, O. Popel, S. Frid, B. Norton, Geographic variation of solar water heater performance in Europe. Proc. Inst. Mech. Eng. Part A: J. Power Energy 220(4), 395–407 (2006)

    Article  Google Scholar 

  • V. Yuvaraj, S. Deepa, A.R. Rozario, M. Kumar, Improving grid power quality with facts device on integration of wind energy system, in 2011 Fifth Asia Modelling Symposium (IEEE, 2011), pp. 157–162

    Google Scholar 

  • Z. Zhai, J.F. Martínez, N.L. Martínez, V.H. Díaz, Applying case-based reasoning and a learning-based adaptation strategy to irrigation scheduling in grape farming. Comput. Electron. Agric. 178, 105741 (2020)

    Article  Google Scholar 

  • X. Zhang, M. Shahidehpour, A. Alabdulwahab, A. Abusorrah, Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Trans. Smart Grid 6(5), 2302–2311 (2015). https://doi.org/10.1109/TSG.2015.2390640

    Article  Google Scholar 

  • G. Zhang, C. Jiang, X. Wang, Comprehensive review on structure and operation of virtual power plant in electrical system (2019). https://doi.org/10.1049/iet-gtd.2018.5880

  • Y. Zhao, Electrical power systems quality. Univ. Buffalo (2016)

    Google Scholar 

  • B. Zwaenepoel, J. Vansteenbrugge, T. Vandoorn, G. Van Eetvelde, L. Vandevelde, Renewable energy balancing with thermal grid support, in 16th International conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2013), vol. 35 (AIDIC Servizi, 2013), pp. 535–540

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Estonian Research Council grant PUTJD915.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sambeet Mishra or Chiara Bordin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mishra, S., Bordin, C., Leinakse, M., Wen, F., Howlett, R.J., Palu, I. (2023). Virtual Power Plants and Integrated Energy System: Current Status and Future Prospects. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_73

Download citation

Publish with us

Policies and ethics