Skip to main content

Hydrogen-Based Dense Energy Carriers in Energy Transition Solutions

  • Reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

Hydrogen has garnered significant research interest in the recent years as an alternative to carbon intense hydrocarbon technology pathways. The stated advantages of hydrogen include high energy density, low emissions at the point of consumption, and availability of diverse feedstock given the presence of the hydrogen atom in water, biomass, and fossil fuels. Nonetheless, emissions resulting from production, the generation of energy required for production, infrastructural material sourcing, and high costs of implementation have challenged the perception of hydrogen as a low carbon solution. The potential for sustainable production, and an existing infrastructural footprint directs attention to the role of ammonia and methanol as dense energy carriers (DECs) in future energy systems. Given the large degree of interaction among the constituent components in energy systems, it is possible to identify network configurations which are net-carbon neutral. To this end, multiscale approaches have become a mainstay in the design and analysis of energy transition scenarios. In the presented work, we discuss both the role of hydrogen as an energy vector in future energy economies, as also multiscale mixed integer programming (MIP) approaches, and data-driven predictive frameworks to model and optimize future hydrogen networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 165, 602–627 (2018)

    Article  Google Scholar 

  • E. Abohamzeh, F. Salehi, M. Sheikholeslami, R. Abbassi, F. Khan, Review of hydrogen safety during storage, transmission, and applications processes. J. Loss Prev. Process Ind. 72, 104569 (2021)

    Article  Google Scholar 

  • R.C. Allen, S.G. Baratsas, R. Kakodkar, S. Avraamidou, J.B. Powell, C.F. Heuberger, C.D. Demirhan, E.N. Pistikopoulos, An optimization framework for solving integrated planning and scheduling problems for dense energy carriers. IFAC-PapersOnLine 54(3), 621–626 (2021)

    Article  Google Scholar 

  • R.C. Allen, S.G. Baratsas, R. Kakodkar, S. Avraamidou, C.D. Demirhan, C.F. Heuberger-Austin, M. Klokkenburg, E.N. Pistikopoulos, A multi-period integrated planning and scheduling approach for developing energy systems. Optimal Control Appl. Methods (2022)

    Google Scholar 

  • A. Almansoori, N. Shah, Design and operation of a stochastic hydrogen supply chain network under demand uncertainty. Int. J. Hydrog. Energy 37(5), 3965–3977 (2012)

    Article  Google Scholar 

  • S.D.-L. Almaraz, C. Azzaro-Pantel, L. Montastruc, L. Pibouleau, O.B. Senties, Assessment of mono and multi-objective optimization to design a hydrogen supply chain. Int. J. Hydrogen Energy 38(33), 14121–14145 (2013)

    Article  Google Scholar 

  • B. Bahl, A. Kümpel, H. Seele, M. Lampe, A. Bardow, Time-series aggregation for synthesis problems by bounding error in the objective function. Energy 135, 900–912 (2017)

    Article  Google Scholar 

  • S.G. Baratsas, E.N. Pistikopoulos, S. Avraamidou, A systems engineering framework for the optimization of food supply chains under circular economy considerations. Sci. Total Environ. 794, 148726 (2021a)

    Article  Google Scholar 

  • S.G. Baratsas, A.M. Niziolek, O. Onel, L.R. Matthews, C.A. Floudas, D.R. Hallermann, S.M. Sorescu, E.N. Pistikopoulos, A framework to predict the price of energy for the end-users with applications to monetary and energy policies. Nat. Commun. 12(1), 1–12 (2021b)

    Article  Google Scholar 

  • S.G. Baratsas, E.N. Pistikopoulos, S. Avraamidou, A quantitative and holistic circular economy assessment framework at the micro level. Comput. Chem. Eng. 107697 (2022)

    Google Scholar 

  • N.F. Barilo, S.C. Weiner, C.W. James, Overview of the doe hydrogen safety, codes and standards program part 2: Hydrogen and fuel cells: Emphasizing safety to enable commercialization. Int. J. Hydrog. Energy 42(11), 7625–7632 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.070

    Article  Google Scholar 

  • D. Bechtsis, N. Tsolakis, E. Iakovou, D. Vlachos, Data-driven secure, resilient and sustainable supply chains: Gaps, opportunities, and a new generalised data sharing and data monetisation framework. Int. J. Prod. Res. 1–21 (2021)

    Google Scholar 

  • B. Beykal, S. Avraamidou, E.N. Pistikopoulos, Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty. Comput. Chem. Eng. 156, 107551 (2022)

    Article  Google Scholar 

  • A. Bhosekar, M. Ierapetritou, Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput. Chem. Eng. 108, 250–267 (2018)

    Article  Google Scholar 

  • J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy: A review. PRO 8(2), 248 (2020)

    Google Scholar 

  • D. Câmara, T. Pinto-Varela, A.P. Barbósa-Povoa, Multi-objective optimization approach to design and planning hydrogen supply chain under uncertainty: A portugal study case, in Computer Aided Chemical Engineering, vol. 46, (Elsevier, 2019), pp. 1309–1314

    Google Scholar 

  • I.I. Cplex, V12. 1: User’s manual for cplex. Int. Bus. Machines Corp. 46(53), 157 (2009)

    Google Scholar 

  • C.D. Demirhan, W.W. Tso, J.B. Powell, E.N. Pistikopoulos, Sustainable ammonia production through process synthesis and global optimization. AICHE J. 65(7), 16498 (2019)

    Article  Google Scholar 

  • N.J. Chrisandina, Vedant S., Iakovou E., Pistikopoulos E.N., M.M. El-Halwagi, Multi-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challenges. Comput. Chem. Eng. 107891 (2022)

    Google Scholar 

  • C.D. Demirhan, W.W. Tso, J.B. Powell, E.N. Pistikopoulos, A multiscale energy systems engineering approach towards integrated multiproduct network optimization. Appl. Energy 281, 116020 (2021). https://doi.org/10.1016/j.apenergy.2020.116020

    Article  Google Scholar 

  • Department of Energy: Doe technical targets for hydrogen production from electrolysis (2020)

    Google Scholar 

  • C. Draxl, A. Clifton, B.-M. Hodge, J. McCaa, The wind integration national dataset (wind) toolkit. Appl. Energy 151, 355–366 (2015)

    Article  Google Scholar 

  • T. Gerres, J.P. Chaves Ávila, P.L. Llamas, T.G. San Román, A review of cross-sector decarbonisation potentials in the european energy intensive industry. J. Clean. Prod. 210, 585–601 (2019). https://doi.org/10.1016/j.jclepro.2018.11.036

    Article  Google Scholar 

  • B. Grimstad, H. Andersson, Relu networks as surrogate models in mixed-integer linear programs. Comput. Chem. Eng. 131, 106580 (2019)

    Article  Google Scholar 

  • Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://www.gurobi.com

  • C.F. Heuberger, I. Staffell, N. Shah, N.M. Dowell, J. Davison, An milp modeling approach to systemic energy technology valuation in the 21st century energy system. Energy Procedia 114, 6358–6365 (2017). https://doi.org/10.1016/j.egypro.2017.03.1772

    Article  Google Scholar 

  • W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 3(29), 884 (2018)

    Article  Google Scholar 

  • A. Hugo, P. Rutter, S. Pistikopoulos, A. Amorelli, G. Zoia, Hydrogen infrastructure strategic planning using multi-objective optimization. Int. J. Hydrog. Energy 30(15), 1523–1534 (2005)

    Article  Google Scholar 

  • IEA: The future of hydrogen (2019)

    Google Scholar 

  • E. Iturriaga, A. Campos-Celador, J. Terés-Zubiaga, U. Aldasoro, M. Álvarez-Sanz, A milp optimization method for energy renovation of residential urban areas: Towards zero energy districts. Sustain. Cities Soc. 68, 102787 (2021). https://doi.org/10.1016/j.scs.2021.102787

    Article  Google Scholar 

  • D. Ivanov, A. Pavlov, B. Sokolov, Optimal distribution (re) planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. Eur. J. Oper. Res. 237(2), 758–770 (2014)

    Article  Google Scholar 

  • S.S. Kumar, V. Himabindu, Hydrogen production by pem water electrolysis–a review. Mater. Sci. Energy Technol. 2(3), 442–454 (2019)

    Google Scholar 

  • L. Li, H. Manier, M.-A. Manier, Hydrogen supply chain network design: An optimization-oriented review. Renew. Sust. Energ. Rev. 103, 342–360 (2019)

    Article  Google Scholar 

  • L. Li, H. Manier, M.-A. Manier, Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning. Comput. Chem. Eng. 134, 106683 (2020)

    Article  Google Scholar 

  • M. Lin, S. Haussener, Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems. Sol. Energy 155, 1389–1402 (2017)

    Article  Google Scholar 

  • M. Lin, S. Haussener, An integrated concentrated solar fuel generator utilizing a tubular solid oxide electrolysis cell as solar absorber. J. Power Sources 400, 592–604 (2018)

    Article  Google Scholar 

  • M. Linder, S. Sarasini, P. van Loon, A metric for quantifying product-level circularity. J. Ind. Ecol. 21(3), 545–558 (2017)

    Article  Google Scholar 

  • O. Lindholm, R. Weiss, A. Hasan, F. Pettersson, J. Shemeikka, A milp optimization method for building seasonal energy storage: A case study for a reversible solid oxide cell and hydrogen storage system. Buildings 10(7), 123 (2020). https://doi.org/10.3390/buildings10070123

    Article  Google Scholar 

  • J. Liu, Z. Xu, J. Wu, K. Liu, X. Guan, Optimal planning of distributed hydrogen-based multi-energy systems. Appl. Energy 281, 116107 (2021)

    Article  Google Scholar 

  • H. Luo, J. Barrio, N. Sunny, A. Li, L. Steier, N. Shah, I.E. Stephens, M.-M. Titirici, Progress and perspectives in photo-and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11(43), 2101180 (2021)

    Article  Google Scholar 

  • J. Mizeraczyk, M. Jasinski, Plasma processing methods for hydrogen production. Eur. Phys. J. Appl. Phys. 75(2), 24702 (2016). https://doi.org/10.1051/epjap/2016150561

    Article  Google Scholar 

  • R. Moradi, K.M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrog. Energy 44(23), 12254–12269 (2019)

    Article  Google Scholar 

  • Y.S. Najjar, Hydrogen safety: The road toward green technology. Int. J. Hydrog. Energy 38(25), 10716–10728 (2013)

    Article  Google Scholar 

  • National Renewable Energy Laboratory: National Renewable Energy Laboratory: 2021 Annual Technology Baseline (2021). https://atb.nrel.gov/

  • G.S. Ogumerem, E.N. Pistikopoulos, Parametric optimization and control toward the design of a smart metal hydride refueling system. AICHE J. 65(10), 16680 (2019)

    Article  Google Scholar 

  • G.S. Ogumerem, C. Kim, I. Kesisoglou, N.A. Diangelakis, E.N. Pistikopoulos, A multi-objective optimization for the design and operation of a hydrogen network for transportation fuel. Chem. Eng. Res. Des. 131, 279–292 (2018)

    Article  Google Scholar 

  • G.S. Ogumerem, W.W. Tso, C.D. Demirhan, S.Y. Lee, H.E. Song, E.N. Pistikopoulos, Toward the optimization of hydrogen, ammonia, and methanol supply chains. IFAC-PapersOnLine 52(1), 844–849 (2019)

    Article  Google Scholar 

  • M.J. Palys, I. Mitrai, P. Daoutidis, Renewable hydrogen and ammonia for combined heat and power systems in remote locations: Optimal design and scheduling. Optimal Control Appl. Methods (2021)

    Google Scholar 

  • C.C. Pantelides, Unified frameworks for optimal process planning and scheduling, in Proceedings on the Second Conference on Foundations of Computer Aided Operations, (CACHE, 1994), pp. 253–274

    Google Scholar 

  • J.O. Robles, S.D.-L. Almaraz, C. Azzaro-Pantel, Optimization of a hydrogen supply chain network design by multi-objective genetic algorithms, in Computer Aided Chemical Engineering, vol. 38, (Elsevier, 2016), pp. 805–810

    Google Scholar 

  • N. Sabio, M. Gadalla, G. Guillén-Gosálbez, L. Jiménez, Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: A case study of Spain. Int. J. Hydrog. Energy 35(13), 6836–6852 (2010)

    Article  Google Scholar 

  • M. Sengupta, Y. Xie, A. Lopez, A. Habte, G. Maclaurin, J. Shelby, The national solar radiation data base (nsrdb). Renew. Sust. Energ. Rev. 89, 51–60 (2018)

    Article  Google Scholar 

  • I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12(2), 463–491 (2019)

    Article  Google Scholar 

  • H. Taghvaei, A. Jahanmiri, M.R. Rahimpour, M.M. Shirazi, N. Hooshmand, Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type. Chem. Eng. J. 226, 384–392 (2013)

    Article  Google Scholar 

  • J.M. Thomas, P.P. Edwards, P.J. Dobson, G.P. Owen, Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. J. Energy Chem. 51, 405–415 (2020)

    Article  Google Scholar 

  • E. Thrampoulidis, G. Mavromatidis, A. Lucchi, K. Orehounig, A machine learning-based surrogate model to approximate optimal building retrofit solutions. Appl. Energy 281, 116024 (2021)

    Article  Google Scholar 

  • Y. Tian, E.N. Pistikopoulos, A process intensification synthesis framework for the design of extractive separation systems with material selection. J. Adv. Manufact. Process. 3(4), 10097 (2021)

    Google Scholar 

  • Y. Tian, S.E. Demirel, M.F. Hasan, E.N. Pistikopoulos, An overview of process systems engineering approaches for process intensification: State of the art. Chem. Eng. Process. Process Intensification 133, 160–210 (2018)

    Article  Google Scholar 

  • W.W. Tso, C.D. Demirhan, C.F. Heuberger, J.B. Powell, E.N. Pistikopoulos, A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage. Appl. Energy 270, 115190 (2020)

    Article  Google Scholar 

  • S.A. van den Heever, I.E. Grossmann, A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network. Comput. Chem. Eng. 27(12), 1813–1839 (2003)

    Article  Google Scholar 

  • S. Vedant, M.R. Atencio, Y. Tian, V. Meduri, E.N. Pistikopoulos, Towards a software prototype for synthesis of operable process intensification systems, in Computer Aided Chemical Engineering, vol. 50, (Elsevier, 2021), pp. 767–772

    Google Scholar 

  • J.B. Von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, et al., Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 44(15), 7780–7808 (2019)

    Article  Google Scholar 

  • H. Wang, P. Daoutidis, Q. Zhang, Harnessing the wind power of the ocean with green offshore ammonia. ACS Sustain. Chem. Eng. 9(43), 14605–14617 (2021)

    Article  Google Scholar 

  • M. Yáñez, A. Ortiz, B. Brunaud, I. Grossmann, I. Ortiz, The use of optimization tools for the hydrogen circular economy, in Computer Aided Chemical Engineering, vol. 46, (Elsevier, 2019), pp. 1777–1782

    Google Scholar 

  • F. Yang, T. Wang, X. Deng, J. Dang, Z. Huang, S. Hu, Y. Li, M. Ouyang, Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. Int. J. Hydrog. Energy 46(61), 31467–31488 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.005

    Article  Google Scholar 

  • Q. Zhang, M. Martín, I.E. Grossmann, Integrated design and operation of renewables-based fuels and power production networks. Comput. Chem. Eng. 122, 80–92 (2019). https://doi.org/10.1016/j.compchemeng.2018.06.018

    Article  Google Scholar 

  • D. Zivar, S. Kumar, J. Foroozesh, Underground hydrogen storage: A comprehensive review. Int. J. Hydrog. Energy 46(45), 23436–23462 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kakodkar, R., Sundar, S., Pistikopoulos, E.N. (2023). Hydrogen-Based Dense Energy Carriers in Energy Transition Solutions. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_171

Download citation

Publish with us

Policies and ethics