Skip to main content

Evaluation of Articular Cartilage and Bone Marrow

  • Living reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

Introduction: Preoperative evaluation of cartilage and bone marrow abnormalities relies on physical exam and imaging studies. Radiographs have a low sensitivity for cartilage damage and marrow abnormalities; MRI is the imaging method of choice.

Physical Exam: The first steps in diagnosis are history and physical examination. Prior surgery or trauma suggest focal cartilage abnormality, whereas chronic, poorly localized pain suggests cartilage wear. Physical exam should include visual inspection, assessment of active and passive range of motion, palpation of painful regions, and evaluation of analgesic gait. Additional tests such as Wilson sign, ligament laxity maneuvers, and patellar tracking may be indicated.

MRI of Cartilage: Each MRI sequence provides specific advantages and disadvantages in evaluating the knee structures and should be thoughtfully applied based on clinical concern. When MRI is acquired appropriately, it accurately evaluates cartilage injury, cartilage degeneration, and inflammatory arthritis. Artifacts such as magic angle, volume averaging, chemical shift, incomplete fat suppression, and patient motion can make MRI evaluation more difficult, and must be considered to arrive at the correct diagnosis.

MRI of Bone Marrow: As bone matures, the marrow progresses from primarily hematopoietic to primarily fatty marrow, but it may reconvert to erythropoietic marrow during adulthood when there is increased hematopoietic demand. Erythropoietic bone marrow can be distinguished from marrow edema/abnormal marrow fluid by its signal characteristics. In the setting of trauma, bone marrow edema follows the line of force, and may have a bandlike, stellate, or semicircular configuration. When a stress reaction progresses to a stress fracture, an incomplete or complete fracture line develops in the center of the region of abnormal bone marrow. In the setting of cartilage degeneration, marrow edema tends to parallel the subchondral bone plate underlying the area of cartilage loss. Neoplasm or infection also shows abnormal marrow fluid but is distinguished by a round or ovoid shape. In adolescence, bone marrow edema may form along the physis due to increased stress on a bone at a time of decreasing flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29(8):1039–49.

    Article  CAS  PubMed  Google Scholar 

  2. Cibere J, Bellamy N, Thorne A, Esdaile JM, McGorm KJ, Chalmers A, et al. Reliability of the knee examination in osteoarthritis: effect of standardization. Arthritis Rheum. 2004;50(2):458–68.

    Article  PubMed  Google Scholar 

  3. Wilson JN. A diagnostic sign in osteochondritis dissecans of the knee. J Bone Joint Surg Am. 1967;49(3):477–80.

    Article  CAS  PubMed  Google Scholar 

  4. Chau MM, Klimstra MA, Wise KL, Ellermann JM, Toth F, Carlson CS, et al. Osteochondritis dissecans: current understanding of epidemiology, etiology, management, and outcomes. J Bone Joint Surg Am. 2021;103(12):1132–51.

    Article  PubMed  Google Scholar 

  5. Conrad JM, Stanitski CL. Osteochondritis dissecans: Wilson’s sign revisited. Am J Sports Med. 2003;31(5):777–8.

    Article  PubMed  Google Scholar 

  6. Dragoo JL, Johnson C, McConnell J. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med. 2012;42(1):51–67.

    Article  PubMed  Google Scholar 

  7. Mazzola C, Mantovani D. Patellofemoral malalignment and chondral damage: current concepts. Joints. 2013;1(2):27–33.

    PubMed  PubMed Central  Google Scholar 

  8. Crema MD, Guermazi A, Sayre EC, Roemer FW, Wong H, Thorne A, et al. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study. Osteoarthr Cartil. 2011;19(12):1429–32.

    Article  CAS  Google Scholar 

  9. Jiang CC, Liu YJ, Yip KM, Wu E. Physiological patellofemoral crepitus in knee joint disorders. Bull Hosp Jt Dis. 1993;53(4):22–6.

    PubMed  Google Scholar 

  10. Matsumoto T, Hashimura M, Takayama K, Ishida K, Kawakami Y, Matsuzaki T, et al. A radiographic analysis of alignment of the lower extremities – initiation and progression of varus-type knee osteoarthritis. Osteoarthr Cartil. 2015;23(2):217–23.

    Article  CAS  Google Scholar 

  11. Wall EJ, Polousky JD, Shea KG, Carey JL, Ganley TJ, Grimm NL, et al. Novel radiographic feature classification of knee osteochondritis dissecans: a multicenter reliability study. Am J Sports Med. 2015;43(2):303–9.

    Article  PubMed  Google Scholar 

  12. Thapa MM, Iyer RS, Khanna PC, Chew FS. MRI of pediatric patients: part 1, normal and abnormal cartilage. AJR Am J Roentgenol. 2012;198(5):W450–5.

    Article  PubMed  Google Scholar 

  13. Dwyer T, Martin CR, Kendra R, Sermer C, Chahal J, Ogilvie-Harris D, et al. Reliability and validity of the arthroscopic international cartilage repair society classification system: correlation with histological assessment of depth. Arthroscopy. 2017;33(6):1219–24.

    Article  PubMed  Google Scholar 

  14. Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW. Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics. 2018;38(5):1478–95.

    Article  PubMed  Google Scholar 

  15. Chahla J, Stone J, Mandelbaum BR. How to manage cartilage injuries? Arthroscopy. 2019;35(10):2771–3.

    Article  PubMed  Google Scholar 

  16. Guermazi A, Roemer FW, Alizai H, Winalski CS, Welsch G, Brittberg M, et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology. 2015;277(1):23–43.

    Article  PubMed  Google Scholar 

  17. Brittberg M, Recker D, Ilgenfritz J, DBF S, Group SES. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018;46(6):1343–51.

    Article  PubMed  Google Scholar 

  18. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil. 2009;17(9):1115–31.

    Article  CAS  Google Scholar 

  19. Wright RW, Group M. Osteoarthritis classification scales: Interobserver reliability and arthroscopic correlation. J Bone Joint Surg Am. 2014;96(14):1145–51.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duncan ST, Khazzam MS, Burnham JM, Spindler KP, Dunn WR, Wright RW. Sensitivity of standing radiographs to detect knee arthritis: a systematic review of level I studies. Arthroscopy. 2015;31(2):321–8.

    Article  PubMed  Google Scholar 

  21. Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res. 2016;474(8):1886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics. 2016;36(6):1911–30.

    Article  PubMed  Google Scholar 

  23. Chiarilli MG, Delli Pizzi A, Mastrodicasa D, Febo MP, Cardinali B, Consorte B, et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiol Med. 2021;126(2):264–76.

    Article  PubMed  Google Scholar 

  24. Sanders TG, Medynski MA, Feller JF, Lawhorn KW. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics. 2000;20 Spec No:S135–151

    Google Scholar 

  25. Zbojniewicz AM, Laor T. Focal Periphyseal edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion? AJR Am J Roentgenol. 2011;197(4):998–1004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Crim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Crim, J., Ma, R., Salmon, S. (2023). Evaluation of Articular Cartilage and Bone Marrow. In: Sherman, S.L., Chahla, J., Rodeo, S.A., LaPrade, R. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-82869-1_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82869-1_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82869-1

  • Online ISBN: 978-3-030-82869-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics