Skip to main content

Extensor Mechanism

  • Living reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

The extensor mechanism is composed of complex osseous and soft tissue structures such as the patella, patellar tendon, quadriceps muscle and tendons, and the patellofemoral joint, which altogether provide delicate synergism for the extension–flexion motion of the knee joint. Anterior knee pain is a common clinical problem, especially in young patients with underlying abnormal patellofemoral morphology, whereas other more serious and less common disorders also involve all components of the extensor mechanism. There have been tremendous advances in the diagnosis and characterization of these disorders using various imaging techniques such as radiography, ultrasound, computed tomography (CT) (including advanced four-dimensional CT i.e., 4D CT), and magnetic resonance imaging (MRI) (including conventional and novel compositional sequences).

Abnormal patellofemoral morphology measurements such as trochlear groove depth (in trochlear dysplasia), patellar height ratio (in patella alta or patella baja), abnormal tibial tubercle–trochlear groove distance (in abnormal lateralization of the tibial tubercle), and lateral patellar tilt may cause pathologies such as patellofemoral pain syndrome and patellofemoral osteoarthritis (OA). Common patellofemoral injuries include patellar tendinosis, patellar tendon ruptures, Osgood–Schlatter disease, Sinding–Larsen–Johansson syndrome, patellar fractures, patellar sleeve fractures, and acute dislocations. In addition to the patellofemoral joint, other injuries to the extensor mechanism are also seen in clinical practice such as partial or complete quadriceps tendon tears and quadriceps muscle injuries. The extensor mechanism may also be affected by soft tissue disorders such as bone and soft tissue tumors, Morel–Lavallee lesions, prepatellar bursitis, superolateral infrapatellar fat pad edema, quadriceps fat pad edema, infrapatellar fat pad abnormalities, and patellar tendon-lateral femoral condyle friction syndrome.

In this chapter, we will cover clinical and imaging manifestations of common knee extensor mechanism disorders, with a special emphasis on advanced imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yu JS, Petersilge C, Sartoris DJ, Pathria MN, Resnick D. MR imaging of injuries of the extensor mechanism of the knee. Radiographics. 1994;14(3):541–51. https://doi.org/10.1148/radiographics.14.3.8066269.

    Article  CAS  PubMed  Google Scholar 

  2. Kheir N, et al. Lateral release associated with MPFL reconstruction in patients with acute patellar dislocation. BMC Musculoskelet Disord. 2022;23(1):139. https://doi.org/10.1186/s12891-022-05013-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skelet Radiol. 2004;33(8) https://doi.org/10.1007/s00256-003-0724-z.

  4. Kavanagh EC, Zoga A, Omar I, Ford S, Schweitzer M, Eustace S. MRI findings in bipartite patella. Skelet Radiol. 2006;36(3):209–14. https://doi.org/10.1007/s00256-006-0232-z.

    Article  Google Scholar 

  5. Johnson JF, Brogdon BG. Dorsal effect of the patella: incidence and distribution. Am J Roentgenol. 1982;139(2):339–40. https://doi.org/10.2214/ajr.139.2.339.

    Article  CAS  Google Scholar 

  6. Bourne MH, Hazel WA, Scott SG, Sim FH. Anterior knee pain. Mayo Clin Proc. 1988;63(5):482–91. https://doi.org/10.1016/S0025-6196(12)65646-8.

    Article  CAS  PubMed  Google Scholar 

  7. Demehri S, et al. Imaging characteristics of contralateral asymptomatic patellofemoral joints in patients with unilateral instability. Radiology. 2014;273(3):821–30. https://doi.org/10.1148/radiol.14140295.

    Article  PubMed  Google Scholar 

  8. Elias DA, Carne A, Bethapudi S, Engebretsen L, Budgett R, O’Connor P. Imaging of plantar fascia and Achilles injuries undertaken at the London 2012 Olympics. Skelet Radiol. 2013;42(12):1645–55. https://doi.org/10.1007/s00256-013-1689-1.

    Article  Google Scholar 

  9. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81. https://doi.org/10.1148/rg.304095755.

    Article  PubMed  Google Scholar 

  10. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination—initial experience. Radiology. 2000;216(2):582–5. https://doi.org/10.1148/radiology.216.2.r00au07582.

    Article  CAS  PubMed  Google Scholar 

  11. Dong C, Zhao C, Kong L, Piao K, Hao K, Wang F. Medialization of trochlear groove was correlated with extended lateral trochlear in trochlear dysplasia: a transverse CT analysis. J Orthop Surg Res. 2022;17(1):276. https://doi.org/10.1186/s13018-022-03166-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meissburger V, Rougereau G, Langlais T, Boisrenoult P, Pujol N. The severity of patellar and trochlear dysplasia are correlated. Knee Surg Sports Traumatol Arthrosc. 2022; https://doi.org/10.1007/s00167-022-06945-0.

  13. Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. Am J Roentgenol. 1996;167(2):339–41. https://doi.org/10.2214/ajr.167.2.8686598.

    Article  CAS  Google Scholar 

  14. Picken S, Summers H, Al-Dadah O. Inter- and intra-observer reliability of patellar height measurements in patients with and without patellar instability on plain radiographs and magnetic resonance imaging. Skelet Radiol. 2022;51(6):1201–14. https://doi.org/10.1007/s00256-021-03937-y.

    Article  Google Scholar 

  15. Tanaka MJ, D’Amore T, Elias JJ, Thawait G, Demehri S, Cosgarea AJ. Anteroposterior distance between the tibial tuberosity and trochlear groove in patients with patellar instability. Knee. 2019;26(6):1278–85. https://doi.org/10.1016/j.knee.2019.08.011.

    Article  PubMed  Google Scholar 

  16. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S. Tibial tubercle–posterior cruciate ligament distance. Am J Sports Med. 2012;40(5):1119–25. https://doi.org/10.1177/0363546512438762.

    Article  PubMed  Google Scholar 

  17. Ye Q, Yu T, Wu Y, Ding X, Gong X. Patellar instability: the reliability of magnetic resonance imaging measurement parameters. BMC Musculoskelet Disord. 2019;20(1):317. https://doi.org/10.1186/s12891-019-2697-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zikria B, et al. Lateral patellar tilt and its longitudinal association with patellofemoral osteoarthritis-related structural damage: analysis of the osteoarthritis initiative data. Knee. 2020;27(6):1971–9. https://doi.org/10.1016/j.knee.2020.11.002.

    Article  PubMed  Google Scholar 

  19. Liu C, et al. Lateral retinaculum plasty instead of lateral retinacular release with concomitant medial patellofemoral ligament reconstruction can achieve better results for patellar dislocation. Knee Surg Sports Traumatol Arthrosc. 2017;26(10):2899–905. https://doi.org/10.1007/s00167-017-4798-x.

    Article  PubMed  Google Scholar 

  20. van Tiggelen D, Cowan S, Coorevits P, Duvigneaud N, Witvrouw E. Delayed vastus medialis obliquus to vastus lateralis onset timing contributes to the development of patellofemoral pain in previously healthy men. Am J Sports Med. 2009;37(6):1099–105. https://doi.org/10.1177/0363546508331135.

    Article  PubMed  Google Scholar 

  21. Collado H, Fredericson M. Patellofemoral pain syndrome. Clin Sports Med. 2010;29(3):379–98. https://doi.org/10.1016/j.csm.2010.03.012.

    Article  PubMed  Google Scholar 

  22. Hinman RS, Lentzos J, Vicenzino B, Crossley KM. Is patellofemoral osteoarthritis common in middle-aged people with chronic patellofemoral pain? Arthritis Care Res. 2014;66(8):1252–7. https://doi.org/10.1002/acr.22274.

    Article  Google Scholar 

  23. Coburn SL, Barton CJ, Filbay SR, Hart HF, Rathleff MS, Crossley KM. Quality of life in individuals with patellofemoral pain: a systematic review including meta-analysis. Phys Ther Sport. 2018;33:96–108. https://doi.org/10.1016/j.ptsp.2018.06.006.

    Article  PubMed  Google Scholar 

  24. Hart HF, Stefanik JJ, Wyndow N, Machotka Z, Crossley KM. The prevalence of radiographic and MRI-defined patellofemoral osteoarthritis and structural pathology: a systematic review and meta-analysis. Br J Sports Med. 2017;51(16):1195–208. https://doi.org/10.1136/bjsports-2017-097515.

    Article  PubMed  Google Scholar 

  25. Tuya E, et al. Automatic diagnosis and grading of patellofemoral osteoarthritis from the axial radiographic view: a deep learning-based approach. Acta Radiol. 2022:028418512210921. https://doi.org/10.1177/02841851221092164.

  26. Agarwala S, Shetty V, Karumuri LK, Vijayvargiya M. Patellar resurfacing versus nonresurfacing with patellaplasty in total knee arthroplasty. Indian J Orthop. 2018;52(4):393–8. https://doi.org/10.4103/ortho.IJOrtho_512_16.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pishgar F, et al. Association between patellofemoral and medial tibiofemoral compartment osteoarthritis progression: exploring the effect of body weight using longitudinal data from osteoarthritis initiative (OAI). Skelet Radiol. 2021;50(9):1845–54. https://doi.org/10.1007/s00256-021-03749-0.

    Article  Google Scholar 

  28. Hunter DJ, et al. Patella malalignment, pain and patellofemoral progression: the health ABC study. Osteoarthr Cartil. 2007;15(10):1120–7. https://doi.org/10.1016/j.joca.2007.03.020.

    Article  CAS  Google Scholar 

  29. Haj-Mirzaian A, Mohajer B, Guermazi A, Roemer FW, Zikria B, Demehri S. Kneeling as a risk factor of patellofemoral joint cartilage damage worsening: an exploratory analysis on the osteoarthritis initiative. Eur Radiol. 2020;31(4):2601–9. https://doi.org/10.1007/s00330-020-07337-z.

    Article  PubMed  Google Scholar 

  30. Alqasim E, Aljowder A, Alammari N, Joudeh AA. Total patellectomy with extensor mechanism reconstruction following pathological fracture due to patellar Ewing’s sarcoma. BMJ Case Rep. 2018, 2018:bcr2017222853. https://doi.org/10.1136/bcr-2017-222853.

  31. Singh J, James SL, Kroon HM, Woertler K, Anderson SE, Davies AM. Tumour and tumour-like lesions of the patella – a multicentre experience. Eur Radiol. 2008;19(3):701–12. https://doi.org/10.1007/s00330-008-1180-x.

    Article  PubMed  Google Scholar 

  32. Tripathy SK, Doki S, Behera G, Sable M. Giant cell tumor with secondary aneurysmal bone cyst of the patella: a case report. Cureus. 2019;11(10):e5819–9. https://doi.org/10.7759/cureus.5819.

  33. Almekinders LC, Temple JD. Etiology, diagnosis, and treatment of tendonitis: an analysis of the literature. Med Sci Sports Exerc. 1998;30(8). [Online]. Available: https://journals.lww.com/acsm-msse/Fulltext/1998/08000/Etiology,_diagnosis,_and_treatment_of_tendonitis_.1.aspx.

  34. Johnson DP, Wakeley CJ, Watt I. Magnetic resonance imaging of patellar tendonitis. J Bone Joint Surg. 1996;78-B(3):452–7. https://doi.org/10.1302/0301-620x.78b3.0780452.

    Article  Google Scholar 

  35. Chantrelle M, Menu P, Gernigon M, Louguet B, Dauty M, Fouasson-Chailloux A. Consequences of patellar tendinopathy on isokinetic knee strength and jumps in professional volleyball players. Sensors (Basel). 2022;22(9):3590. https://doi.org/10.3390/s22093590.

    Article  PubMed  Google Scholar 

  36. Ghany JF, et al. Extensor mechanism tendinopathy in patients with lateral patellar maltracking. Skelet Radiol. 2021;50(11):2205–12. https://doi.org/10.1007/s00256-021-03787-8.

    Article  Google Scholar 

  37. Yablon CM, Pai D, Dong Q, Jacobson JA. Magnetic resonance imaging of the extensor mechanism. Magn Reson Imaging Clin N Am. 2014;22(4):601–20. https://doi.org/10.1016/j.mric.2014.07.004.

    Article  PubMed  Google Scholar 

  38. Boublik M, Schlegel T, Koonce R, Genuario J, Lind C, Hamming D. Patellar tendon ruptures in National Football League Players. Am J Sports Med. 2011;39(11):2436–40. https://doi.org/10.1177/0363546511417083.

    Article  PubMed  Google Scholar 

  39. Lee D, Stinner D, Mir H. Quadriceps and patellar tendon ruptures. J Knee Surg. 2013;26(05):301–8. https://doi.org/10.1055/s-0033-1353989.

    Article  PubMed  Google Scholar 

  40. Herman MJ, Martinek M. The limping child. Pediatr Rev. 2015;36(5):184–97. https://doi.org/10.1542/pir.36.5.184.

    Article  PubMed  Google Scholar 

  41. Maher PJ, Ilgen JS. Osgood-Schlatter disease. BMJ Case Rep. 2013;2013:bcr2012007614. https://doi.org/10.1136/bcr-2012-007614.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Valentino M, Quiligotti C, Ruggirello M. Sinding-Larsen-Johansson syndrome: a case report. J Ultrasound. 2012;15(2):127–9. https://doi.org/10.1016/j.jus.2012.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwamoto J, Takeda T, Sato Y, Matsumoto H. Radiographic abnormalities of the inferior pole of the patella in juvenile athletes. Keio J Med. 2009;58(1):50–3. https://doi.org/10.2302/kjm.58.50.

    Article  PubMed  Google Scholar 

  44. Chun KA, Ohashi K, Bennett DL, El-Khoury GY. Patellar fractures after total knee replacement. Am J Roentgenol. 2005;185(3):655–60. https://doi.org/10.2214/ajr.185.3.01850655.

    Article  Google Scholar 

  45. Bates DG, Hresko MT, Jaramillo D. Patellar sleeve fracture: demonstration with MR imaging. Radiology. 1994;193(3):825–7. https://doi.org/10.1148/radiology.193.3.7972832.

    Article  CAS  PubMed  Google Scholar 

  46. Ostlere S. The extensor mechanism of the knee. Radiol Clin N Am. 2013;51(3):393–411. https://doi.org/10.1016/j.rcl.2012.11.006.

    Article  PubMed  Google Scholar 

  47. Devana SK, Trivellas A, Bennett A, Jackson N, Beck JJ. Clinical and radiographic differentiation of pediatric patellar sleeve fractures and other inferior pole pathologies. Am J Sports Med. 2022;50(4):977–83. https://doi.org/10.1177/03635465221073995.

    Article  PubMed  Google Scholar 

  48. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225(3):736–43. https://doi.org/10.1148/radiol.2253011578.

    Article  PubMed  Google Scholar 

  49. Nomura E, Horiuchi Y, Inoue M. Correlation of MR imaging findings and open exploration of medial patellofemoral ligament injuries in acute patellar dislocations. Knee. 2002;9(2):139–43. https://doi.org/10.1016/s0968-0160(02)00002-9.

    Article  CAS  PubMed  Google Scholar 

  50. Sillanpää PJ, Mäenpää HM. First-time patellar dislocation. Sports Med Arthrosc Rev. 2012;20(3):128–35. https://doi.org/10.1097/jsa.0b013e318256bbe5.

    Article  PubMed  Google Scholar 

  51. Ilan DI, Tejwani N, Keschner M, Leibman M. Quadriceps tendon rupture. J Am Acad Orthop Surg. 2003;11(3):192–200. https://doi.org/10.5435/00124635-200305000-00006.

    Article  PubMed  Google Scholar 

  52. Majeed H, dos Remedios I, Datta P, Griffiths D. Prepatellar continuation rupture: report of an unusual case. Knee. 2014;21(5):979–81. https://doi.org/10.1016/j.knee.2014.07.002.

    Article  PubMed  Google Scholar 

  53. Staeubli HU, Bollmann C, Kreutz R, Becker W, Rauschning W. Quantification of intact quadriceps tendon, quadriceps tendon insertion, and suprapatellar fat pad: MR arthrography, anatomy, and cryosections in the sagittal plane. Am J Roentgenol. 1999;173(3):691–8. https://doi.org/10.2214/ajr.173.3.10470905.

    Article  CAS  Google Scholar 

  54. Arıcan M, Turhan Y, Gamsızkan M. A rare localized giant cell tumor of the tendon sheath originating from the ligamentum mucosum: a case report. Jt Dis Relat Surg. 2020;31(1):149–53. https://doi.org/10.5606/ehc.2020.72323.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tejwani SG, Cohen SB, Bradley JP. Management of Morel-Lavallee lesion of the knee. Am J Sports Med. 2007;35(7):1162–7. https://doi.org/10.1177/0363546507299448.

    Article  PubMed  Google Scholar 

  56. Harma A, Inan M, Ertem K. The Morel-Lavallée lesion: a conservative approach to closed degloving injuries. Acta Orthop Traumatol Turc. 2017;38(4):270–3. https://doi.org/10.33140/mcr.02.01.11.

    Article  Google Scholar 

  57. Charret L, et al. Clinical characteristics and management of olecranon and prepatellar septic bursitis in a multicentre study. J Antimicrob Chemother. 2021;76(11):3029–32. https://doi.org/10.1093/jac/dkab265.

    Article  CAS  PubMed  Google Scholar 

  58. Baumbach SF, Lobo CM, Badyine I, Mutschler W, Kanz K-G. Prepatellar and olecranon bursitis: literature review and development of a treatment algorithm. Arch Orthop Trauma Surg. 2013;134(3):359–70. https://doi.org/10.1007/s00402-013-1882-7.

    Article  PubMed  Google Scholar 

  59. Can TS, Yilmaz BK, Özdemir S. Magnetic resonance imaging of the quadriceps fat pad oedema pattern in relation to patellofemoral joint pathologies. Pol J Radiol. 2019;84:e375–80. https://doi.org/10.5114/pjr.2019.89196.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Erber B, Baur-Melnyk A, Glaser C, Goller S, Ricke J, Heuck A. Quadriceps fat pad edema in MR imaging: association with quadriceps tendon alterations in a retrospective analysis. Eur J Radiol. 2021;142:109858. https://doi.org/10.1016/j.ejrad.2021.109858.

    Article  PubMed  Google Scholar 

  61. Campagna R, et al. Is Superolateral Hoffa fat pad edema a consequence of impingement between lateral femoral condyle and patellar ligament? Radiology. 2012;263(2):469–74. https://doi.org/10.1148/radiol.12111066.

    Article  PubMed  Google Scholar 

  62. Haj-Mirzaian A, et al. Superolateral Hoffa’s fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) osteoarthritis biomarkers consortium. Eur Radiol. 2018;28(10):4134–45. https://doi.org/10.1007/s00330-018-5334-1.

    Article  PubMed  Google Scholar 

  63. Subhawong TK, Eng J, Carrino JA, Chhabra A. Superolateral Hoffa’s fat pad edema: association with patellofemoral maltracking and impingement. AJR Am J Roentgenol. 2010;195(6):1367–73. https://doi.org/10.2214/AJR.10.4668.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Clockaerts S, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr Cartil. 2010;18(7):876–82. https://doi.org/10.1016/j.joca.2010.03.014.

    Article  CAS  Google Scholar 

  65. Post WR, Teitge R, Amis A. Patellofemoral malalignment: looking beyond the viewbox. Clin Sports Med. 2002;21(3):521–46. https://doi.org/10.1016/s0278-5919(02)00011-x.

    Article  PubMed  Google Scholar 

  66. Schulthies SS, Francis RS, Fisher AG, van de Graaff KM. Does the Q angle reflect the force on the patella in the frontal plane? Phys Ther. 1995;75(1):24–30. https://doi.org/10.1093/ptj/75.1.24.

    Article  CAS  PubMed  Google Scholar 

  67. Li J, et al. Quantitative magnetic resonance imaging in patellar tendon-lateral femoral condyle friction syndrome: relationship with subtle patellofemoral instability. Skelet Radiol. 2019;48(8):1251–9. https://doi.org/10.1007/s00256-019-3163-1.

    Article  Google Scholar 

  68. Dragoo JL, Johnson C, McConnell J. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med. 2012;42(1):51–67. https://doi.org/10.2165/11595680-000000000-00000.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Demehri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kasaeian, A., Stevens, K.J., Demehri, S. (2023). Extensor Mechanism. In: Sherman, S.L., Chahla, J., Rodeo, S.A., LaPrade, R. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-82869-1_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82869-1_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82869-1

  • Online ISBN: 978-3-030-82869-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics