Skip to main content

Microbial Production of Curcumin

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

Curcumin, a polyphenol produced by turmeric (Curcuma longa), has attracted increased attention due to its potential as a novel cancer-fighting drug. However, to satisfy the required curcumin demand for health-related studies, high purity curcumin preparations are required, which are difficult to obtain and are very expensive. Curcumin and other curcuminoids are usually obtained through plant extraction. However, these polyphenols accumulate in low amounts over long periods in the plant and their extraction process is costly and not environmentally friendly. In addition, curcumin chemical synthesis is complex. All these reasons limit the advances in studies related to the in vitro and in vivo curcumin biological activities. The microbial production of curcumin appears as a solution to overcome the limitations associated with the currently used methods. Curcumin biosynthesis begins with the conversion of the aromatic amino acids, phenylalanine and tyrosine, into phenylpropanoids, the curcuminoid precursors. The phenylpropanoids are then activated through condensation with a CoA molecule. Afterwards, curcuminoids are synthesized by the action of type III polyketide synthases (PKS) that combine two activated phenylpropanoids and a malonyl-CoA molecule. To engineer microbes to produce curcumin, the curcuminoid biosynthetic genes must be introduced as microorganisms lack the enzymatic reactions responsible to synthesize curcuminoids. In this chapter, the advances regarding the microbial production of curcumin are exposed. The heterologous production of curcumin has been mainly achieved in the bacteria Escherichia coli. However, other microorganisms have already been explored. Besides the introduction of curcumin biosynthetic genes, the optimization of the microbial chassis must also be considered to maximize the production yields. The strategies employed for this purpose are also herein presented. The maximum titer of curcumin produced by a genetically engineered E. coli was 563.4 mg/L with a substrate conversion yield of 100% from supplemented ferulic acid. Moreover, the de novo production of curcumin was accomplished in E. coli reaching 3.8 mg/L of curcumin. Overall, the recent developments on curcumin heterologous production are very encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med. 2017;7(2):205–33.

    Article  PubMed  Google Scholar 

  • Amin AR, Haque A, Rahman MA, Chen ZG, Khuri FR, Shin DM. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways. PLoS One. 2015;10(4):e0124218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases–an update. Immunology. 2014;142(2):151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydin F, Yilmaz E, Soylak M. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 2018;243:442–7.

    Article  CAS  PubMed  Google Scholar 

  • Belcaro G, Cesarone MR, Dugall M, Pellegrini L, Ledda A, Grossi MG, et al. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients. Altern Med Rev. 2010;15(4):337–44.

    PubMed  Google Scholar 

  • Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med Cell Longev. 2016;2016:1–11.

    Article  Google Scholar 

  • Cao YK, Li HJ, Song ZF, Li Y, Huai QY. Synthesis and biological evaluation of novel curcuminoid derivatives. Molecules. 2014;19(10):16349–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castaño-Cerezo S, Bernal V, Röhrig T, Termeer S, Cánovas M. Regulation of acetate metabolism in Escherichia coli BL21 by protein N ε-lysine acetylation. Appl Microbiol Biotechnol. 2015;99(8):3533–45.

    Article  PubMed  Google Scholar 

  • Chapple ILC. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24(5):287–96.

    Article  CAS  PubMed  Google Scholar 

  • Chu LL, Pandey RP, Dhakal D, Sohng JK. Increased production of dicinnamoylmethane via improving cellular Malonyl-CoA level by using a CRISPRi in Escherichia coli. Appl Biochem Biotechnol. 2020;190(1):325–40.

    Article  CAS  PubMed  Google Scholar 

  • Couto MR, Rodrigues JL, Rodrigues LR. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli. J R Soc Interface. 2017;14(133):20170470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 1999;19(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson HM, Wessman P, Ge C, Edwards K, Wieslander Å. Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase. J Biol Chem. 2009;284(49):33904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority. Refined exposure assessment for curcumin (E 100). EFSA J. 2014;12(10):3876.

    Article  Google Scholar 

  • Fang Z, Jones JA, Zhou J, Koffas MA. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnol J. 2018;13(5):1700576.

    Article  Google Scholar 

  • Ferrari E, Lazzari S, Marverti G, Pignedoli F, Spagnolo F, Saladini M. Synthesis, cytotoxic and combined cDDP activity of new stable curcumin derivatives. Bioorg Med Chem. 2009;17(8):3043–52.

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010;62(7):919–30.

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Rainha J, Rodrigues LR, Rodrigues JL. Yeast synthetic biology approaches for the production of valuable polyphenolic compounds. Chapter 13. In: Harzevili FD, editor. Synthetic biology of yeasts: tools and applications. Springer; 2021.

    Google Scholar 

  • Grand View Research Curcumin (2021) Curcumin market size & share analysis report, 2028. Retrieved from: https://www.grandviewresearch.com/industry-analysis/turmeric-extract-curcumin-market

  • Guo YL, Li XZ, Kuang CT. Antioxidant pathways and chemical mechanism of curcumin. In: Advanced materials research. Trans Tech Publications Ltd.; 2011.

    Google Scholar 

  • Gupta AP, Gupta MM, Kumar S. Simultaneous determination of curcuminoids in curcuma samples using high performance thin layer chromatography. J Liq Chromatogr Relat Technol. 1999;22(10):1561–9.

    Article  CAS  Google Scholar 

  • Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Chandra A, Aggarwal G. Curcumin: potential therapeutic moiety for fungal infections. Curr Tradit Med. 2018;4(4):249–62.

    Article  CAS  Google Scholar 

  • Hahn YI, Kim SJ, Choi BY, Cho KC, Bandu R, Kim KP, et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep. 2018;8(1):1–14.

    Article  Google Scholar 

  • Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet. 2019;10:514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.

    Article  PubMed Central  Google Scholar 

  • Incha MR, Thompson MG, Blake-Hedges JM, Liu Y, Pearson AN, Schmidt M, et al. Leveraging host metabolism for bisdemethoxycurcumin production in Pseudomonas putida. Metab Eng Commun. 2020;10:e00119.

    Article  PubMed  Google Scholar 

  • Jennings MR, Parks RJ. Curcumin as an antiviral agent. Viruses. 2020;12(11):1242.

    Article  CAS  PubMed Central  Google Scholar 

  • Kan E, Katsuyama Y, Maruyama JI, Tamano K, Koyama Y, Ohnishi Y. Production of the plant polyketide curcumin in Aspergillus oryzae: strengthening malonyl-CoA supply for yield improvement. Biosci Biotechnol Biochem. 2019;83(7):1372–81.

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, et al. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother Pharmacol. 2013;71(6):1521–30.

    Article  CAS  PubMed  Google Scholar 

  • Kang SY, Choi O, Lee JK, Ahn JO, Ahn JS, Hwang BY, Hong YS. Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain. Microb Cell Factories. 2015;14(1):1–11.

    Article  Google Scholar 

  • Kang SY, Heo KT, Hong YS. Optimization of artificial curcumin biosynthesis in E. coli by Randomized 5′-UTR sequences to control the multienzyme pathway. ACS Synth Biol. 2018;7(9):2054–62.

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Funa N, Horinouchi S. Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J: Healthcare Nut Technol. 2007a;2(10):1286–93.

    Article  CAS  Google Scholar 

  • Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J Biol Chem. 2007b;282(52):37702–9.

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology. 2008;154(9):2620–8.

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Kita T, Funa N, Horinouchi S. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J Biol Chem. 2009a;284(17):11160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuyama Y, Kita T, Horinouchi S. Identification and characterization of multiple curcumin synthases from the herb Curcuma longa. FEBS Lett. 2009b;583(17):2799–803.

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Hirose Y, Funa N, Ohnishi Y, Horinouchi S. Precursor-directed biosynthesis of curcumin analogs in Escherichia coli. Biosci Biotechnol Biochem. 2010;74(3):641–5.

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Modi NH, Panda D, Roy N. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin. Eur J Med Chem. 2010;45(9):4209–14.

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Cha MN, Kim BG, Ahn JH. Production of curcuminoids in engineered Escherichia coli. J Microbiol Biotechnol. 2017;27(5):975–82.

    Article  CAS  PubMed  Google Scholar 

  • Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889–95.

    Article  CAS  PubMed  Google Scholar 

  • Konzock O, Zaghen S, Norbeck J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates. BMC Microbiol. 2021;21(1):1–10.

    Article  Google Scholar 

  • Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.

    Article  CAS  PubMed  Google Scholar 

  • Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):1–4.

    Article  Google Scholar 

  • Lin X, Bai D, Wei Z, Zhang Y, Huang Y, Deng H, Huang X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Keap1-Nrf2 pathway. PLoS One. 2019;14(5):e0216711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction of curcumin by sample–solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal. 2008;46(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  • Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ, Suh J, et al. Curcumin downregulates the constitutive activity of NF-κB and induces apoptosis in novel mouse melanoma cells. Melanoma Res. 2007;17(5):274–83.

    Article  PubMed  Google Scholar 

  • Marquardt JU, Gomez-Quiroz L, Camacho LOA, Pinna F, Lee YH, Kitade M, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63(3):661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol. 2002;68(9):4416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew D, Hsu WL. Antiviral potential of curcumin. J Funct Foods. 2018;40:692–9.

    Article  CAS  Google Scholar 

  • Menghwar P, Yilmaz E, Soylak M. Development of an ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction (UA-RAS-LPME) method for separation-preconcentration and UV-VIS spectrophotometric detection of curcumin. Sep Sci Technol. 2018;53(16):2612–21.

    Article  CAS  Google Scholar 

  • Miyazono K, Um J, Imai F, Katsuyama Y, Ohnish Y, Horinouchi S, Masaru Tanokura M. Crystal structure of curcuminoid synthase CUS from Oryza sativa. Proteins: Struct Funct Bioinform. 2011;79(2):669–73.

    Article  CAS  Google Scholar 

  • Morita H, Wanibuchi K, Kato R, Sugio S, Abe I. Expression, purification and crystallization of a plant type III polyketide synthase that produces diarylheptanoids. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2010;66(8):948–50.

    Article  CAS  Google Scholar 

  • Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 2015;23(8):498–508.

    Article  CAS  PubMed  Google Scholar 

  • Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8–9):714–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagavekar N, Singhal RS. Supercritical fluid extraction of Curcuma longa and Curcuma amada oleoresin: optimization of extraction conditions, extract profiling, and comparison of bioactivities. Ind Crop Prod. 2019;134:134–45.

    Article  CAS  Google Scholar 

  • Niranjan A, Prakash D. Chemical constituents and biological activities of turmeric (Curcuma longa L.) – a review. J Food Sci Technol. 2008;45(2):109.

    CAS  Google Scholar 

  • Palmer CM, Miller KK, Nguyen A, Alper HS. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metab Eng. 2020;57:174–81.

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patiño-Morales CC, Soto-Reyes E, Arechaga-Ocampo E, Ortiz-Sánchez E, Antonio-Véjar V, Pedraza-Chaverri J, García-Carrancá A. Curcumin stabilizes p53 by interaction with NAD(P)H: Quinone oxidoreductase 1 in tumor-derived cell lines. Redox Biol. 2020;28:101320.

    Article  PubMed  Google Scholar 

  • Phipps KR, Quesnot N, Privat K, Baldwin NJ, Ahlborn E, Fança-Berthon P. Toxicological safety evaluation of a novel highly bioavailable turmeric extract formulation. J Appl Toxicol. 2020;40(2):285–99.

    Article  CAS  PubMed  Google Scholar 

  • Phuna ZX, Yu JKE, Tee JY, Chuah SQ, Tan NWH, Vijayabalan S, et al. In vitro evaluation of nanoemulsions of curcumin, piperine, and tualang honey as antifungal agents for Candida species. J Appl Biotechnol Rep. 2020;7(3):189–97.

    Google Scholar 

  • Poudel A, Pandey J, Lee HK. Geographical discrimination in curcuminoids content of turmeric assessed by rapid UPLC-DAD validated analytical method. Molecules. 2019;24(9):1805.

    Article  CAS  PubMed Central  Google Scholar 

  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic biology approaches to engineer Saccharomyces cerevisiae towards the industrial production of valuable polyphenolic compounds. Life. 2020;10(5):56.

    Article  CAS  PubMed Central  Google Scholar 

  • Rainha J, Rodrigues JL, Faria C, Rodrigues LR. Curcumin biosynthesis from ferulic acid by engineered Saccharomyces cerevisiae. Biotechnol J. 2021a;17:2100400.

    Article  Google Scholar 

  • Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: a powerful tool to efficiently engineer Saccharomyces cerevisiae. Life. 2021b;11(1):13.

    Article  CAS  Google Scholar 

  • Ramirez-Ahumada M, Timmermann BN, Gang DR. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry. 2006;67(18):2017–29.

    Article  CAS  Google Scholar 

  • Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK. Scale up, optimization and stability analysis of curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol. 2012;10(1):1–18.

    Article  Google Scholar 

  • Rao EV, Sudheer P. Revisiting curcumin chemistry part I: a new strategy for the synthesis of curcuminoids. Indian J Pharm Sci. 2011;73(3):262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rattis BA, Ramos SG, Celes M. Curcumin as a potential treatment for COVID-19. Front Pharmacol. 2021;12:1068.

    Article  Google Scholar 

  • Revathy S, Elumalai S, Antony MB. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J Exp Sci. 2011;2(7):21–5.

    CAS  Google Scholar 

  • Rodrigues JL, Rodrigues LR. Synthetic biology: perspectives in industrial biotechnology. In: Pandey A, Teixeira J, editors. Foundations of biotechnology and bioengineering, volume 1 – current developments in biotechnology & bioengineering. Elsevier; 2017.

    Google Scholar 

  • Rodrigues JL, Rodrigues LR. Potential applications of the Escherichia coli heat shock response in synthetic biology. Trends Biotechnol. 2018;36(2):186–98.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Sousa M, Prather KL, Kluskens LD, Rodrigues LR. Selection of Escherichia coli heat shock promoters toward their application as stress probes. J Biotechnol. 2014;188:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Araújo RG, Prather KL, Kluskens LD, Rodrigues LR. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol J. 2015a;10(4):599–609.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Prather KL, Kluskens LD, Rodrigues LR. Heterologous production of curcuminoids. Microbiol Mol Biol Rev. 2015b;79(1):39–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JL, Couto MR, Araújo RG, Prather KL, Kluskens L, Rodrigues LR. Hydroxycinnamic acids and curcumin production in engineered Escherichia coli using heat shock promoters. Biochem Eng J. 2017a;125:41–9.

    Article  CAS  Google Scholar 

  • Rodrigues JL, Ferreira D, Rodrigues LR. Synthetic biology strategies towards the development of new bioinspired technologies for medical applications. In: Rodrigues LR, Mota M, editors. Bioinspired materials for medical applications. Elsevier; 2017b.

    Google Scholar 

  • Rodrigues JL, Gomes D, Rodrigues LR. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli. Front Bioeng Biotechnol. 2020;8:59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: an evidence-based review. Pharmacol Res. 2021;166:105489.

    Article  CAS  PubMed  Google Scholar 

  • Sahne F, Mohammadi M, Najafpour GD, Moghadamnia AA. Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): isolation, purification and analysis of curcumin. Ind Crop Prod. 2017;95:686–94.

    Article  CAS  Google Scholar 

  • Santhoshkumar R, Yusuf A. In silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. J Genet Eng Biotechnol. 2020;18(1):1–9.

    Article  Google Scholar 

  • Santos CNS, Xiao W, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci. 2012;109(34):13538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules. 2015;20(2):2728–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Manoharlal R, Puri N, Prasad R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep. 2010;30(6):391–404.

    Article  CAS  PubMed  Google Scholar 

  • Shockey JM, Fulda MS, Browse J. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol. 2003;132(2):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Aggarwal B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995–5000.

    Article  CAS  PubMed  Google Scholar 

  • Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A. Curcumin, a golden spice with a low bioavailability. J Herbal Med. 2015;5(2):57–70.

    Article  Google Scholar 

  • Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Abd Ali MR. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer: Targets Ther. 2018;10:207.

    CAS  Google Scholar 

  • Thimmulappa RK, Kumar MNK, Shivamallu C, Subramaniam KT, Radhakrishnan A, Suresh B, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon. 2021;7(2):e06350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033.

    Article  CAS  PubMed Central  Google Scholar 

  • Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):e0121313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1411–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang S, Zhou T, Zeng J, Zhan J. Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Appl Microbiol Biotechnol. 2013;97(17):7877–85.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Chen W, Zhang Y, Zhang X, Jin JM, Tang SY. Metabolic engineering for improved curcumin biosynthesis in Escherichia coli. J Agric Food Chem. 2020;68(39):10772–9.

    Article  CAS  PubMed  Google Scholar 

  • Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B. 2007;853(1–2):183–9.

    Article  CAS  Google Scholar 

  • Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH, Liu CY. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep. 2019;9(1):1–14.

    Article  Google Scholar 

  • Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: a comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. Ind Crop Prod. 2021;172:114050.

    Article  Google Scholar 

  • Zielińska A, Alves H, Marques V, Durazzo A, Lucarini M, Alves TF, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina. 2020;56(7):336.

    Article  PubMed Central  Google Scholar 

  • Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:186864.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/BIO/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechnaical Systems, LA/P/0029/2020. J.R. is recipient of a doctoral fellowship (SFRH/BD/138325/2018) supported by a doctoral advanced training funded by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana L. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rainha, J., Rodrigues, L.R., Rodrigues, J.L. (2022). Microbial Production of Curcumin. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics